

Оценка рисков при транспортировке аэрозолей

Окончательный отчет

подготовлен дл.

Управления по безопасности трубопроводов и опасных материалов подготовлено Cambridge Systematics, Inc.

С

HazMat Safety Consulting, LLC ScienceSmith Consulting, Inc.

24 марта 2020 г. www.camsys.com

Оценка риска при транспортировке аэрозолей

Окончательный отчет

подготовлен для

Управление по безопасности трубопроводов и опасных материалов

подготовлено

Cambridge Systematics, Inc.

Центр метро Бетесда, 3 Бетесда, MD 20814

С

HazMat Safety Consulting, LLC ScienceSmith Consulting, Inc.

Дата

24 Марта 2020 г.

Список таблиц

Таблица 2.1	Производство аэрозольных баллонов в США <i>с 2013 по 2017 год</i>
Таблица 4.1	Правила использования аэрозольных баллонов в США, Канаде и Европе9
Таблица 4.2	Продукты, рассмотренные в режиме отказа, и анализ последствий12
Таблица 4.3	Характеристики примеров изделий, рассмотренных при анализе режима отказа и последствий 13
Таблица 4.4	Максимальное содержание газообразного топлива в однолитровом аэрозольном распылителе для
	типичных топлив
Таблица 4.5	Диапазоны теплоты сгорания и воспламеняемости для типичных топлив15
Таблица 4.6	Виды отказов и их последствия в данных об инцидентах с аэрозолями в Соединенных Штатах и Канаде 18
Таблица 4.7	Анализ режимов отказов и их последствий, оценки возникновения аварий19
Таблица 4.8	Анализ режимов отказов и их последствий, оценки степени серьезности
Таблица 4.9	Анализ режимов отказов и их последствий, оценки смягчения последствий21
Таблица 4.10	Комбинации причин и следствий в аэрозольных баллонах и сокращение сценариев 22
Таблица 4.11	Объединенные первопричины и следствия, рассмотренные при анализе режима отказа и последствий
	123
Ta6-1111 4 12	Краткое описание аэрозольных условий
Таблица 4.12	Анализ режима отказа и последствий С полной оценкой результатов
Таблица 4.13	Общий номер приоритета риска в разбивке по продуктам и сценариям
Таблица 4.14	Наиболее серьезное RPN в разбивке по продуктам и сценариям
Таблица 5.1	Инциденты с аэрозолями PHMSA, связанные со специальными разрешениями40
Таблица 5.2	Требования нормативных актов США по опасным материалам к отчетности об
Таблица 6.1	инцидентах с опасными материалами52
	Сравнение инцидентов в Соединенных Штатах по результатам
Таблица 6.2	Правила Канады по перевозке опасных грузов, отчетность Требования к инцидентам с аэрозолями
Таблица 6.3	60 Технические характеристики средства для удаления
	вандальных следов
Таблица 6.4	вандальных следов
Таблица 6.5	деталей тормозов 70 Характеристики средства для очистки
Таблица 6.6	ломающихся деталей70 Технические характеристики аэрозольного
Таблица 6.7	инсектицида71 Характеристики аэрозольного инсектицида
Таблица 6.8	71 Технические характеристики автоматического кондиционирования
Таблица 6.9	воздуха 72 Характеристики продукта для автоматического
Таблица 6.10	кондиционирования воздуха72 Характеристики
Таблица 6.11	продукта только для газа-бутанового топлива73
Таблица 6.12	Характеристики продукта только для газа-бутанового топлива73
Таблица 6.13	Только на газу-характеристики воздушного пылесоса НFC-152а74
Таблица 6.14	Только на газе-Характеристики воздушного пылесоса НFC-152а74
Таблина 6 15	

Таблица 6.16	Только на газу-технические характеристики воздушного пылесоса R-134a	
Таблица 6.17	75 Только на газе-характеристики продукта воздушного пылесоса R-134a	
Таблица 6.18	75 Разрешенных контейнеров (выдержка из HMR))	77
Таблица 6.19	Типичные системы подачи топлива	77
Таблица 6.20	Пороговые значения давления в контейнерах	78
Таблица 6.21	Компоненты топлива и пределы давления	79 Правила
Таблица 6.22	использования аэрозольных баллонов в США, Канаде и Европе	85 Сравнение
Таблица 6.23	специальных разрешений для 49 CFR и типовых правил ООН	. 89 Согласованная
•	на глобальном уровне система классификации и маркировки химических г	веществ и информации об
Таблица 6.24	опасности Стандартные требования к маркировке аэрозолей	93
	Стандарт управления по безопасности и гигиене труда в области информи	рования об опасности:
Таблица 6.25	Паспорта безопасности	94

Список цифр

Рисунок 3.1	Поставка аэрозоля в США Chain5
Рисунок 5.1	Упаковка аэрозольных баллонов, требующая специальной маркировки разрешения41
Рисунок 5.2	Упаковка аэрозольных баллонов, требующая маркировки ограниченного количества
Рисунок 6.1	Инциденты с транспортировкой аэрозоля в США <i>С 1988 по 2018 год</i>
Рисунок 6.2	с аэрозолями в Соединенных Штатах при транспортировке в разбивке по видам транспорта <i>с 1988 по 2018 год</i>
Рисунок 6.3	Инциденты с аэрозолями в Канаде в разбивке по этапам транспортировки <i>с 1988 по 2018 год</i>
Рисунок 6.4	Инциденты с аэрозолями в Канаде при транспортировке в разбивке по видам транспорта <i>с 1988 по 2018 год</i>
Рисунок 6.5	62 Сравнение инцидентов в Соединенных Штатах и Канаде по этапам транспортировки
Рисунок 6.6	Сравнение инцидентов в Соединенных Штатах и Канаде по видам транспорта64
Рисунок 6.7	Сравнение инцидентов в Соединенных Штатах и Канаде по результату
Рисунок 6.8	Условия, при которых в воздухе образуются легковоспламеняющиеся и удушающие аэрозоли, в зависимости от транспортировки
гисунок 0.o	Размер контейнера и количество выделяемого аэрозоля
Рисунок 6.9	Согласованная на глобальном уровне система классификации и маркировки химических веществ пиктограммами92

Сокращения

ЭРL Логистика сторонних производителей

ADR Европейское соглашение о международных автомобильных перевозках опасных

ASQ грузов Американское общество качества,

BLEVE Закон о кипящей жидкости, взрыве расширяющихся паров,

САА Закон о чистом воздухе,CFR Свод федеральных правил,

CFS Исследование товарных потоков,

СОГС Контейнер на платформе,

СОSTHA Совет по безопасной перевозке опасных предметов,

CS Team Кембриджская группа систематиков,

DOТ Департамент транспорта,

ЕРА Агентство по охране окружающей среды,

EU Европейский союз,

FAF Система анализа фрахта,

FAF4.1 Версия системы анализа фрахта,

FEA Европейская федерация аэрозолей,

FHWA Федеральное управление автомобильных дорог,

FMCSA Федеральное управление безопасности автомобильных перевозчиков,

FTL Полная загрузка грузовика,

GHS Глобальная гармонизация классификации,

НСРА Ассоциация бытовых потребительских товаров,

HCS Стандарт информирования об опасности,

НГС Гидрофторуглерод,

 ННС
 Высокоопасные химические вещества,

 ННV
 Более высокий Теплотворная способность

 НМR
 Правила перевозки опасных материалов

 НМТА
 Закон о перевозке опасных материалов

HMTUSA Единый закон о безопасности перевозки опасных материалов

НОС Теплота сгорания

In. Дюймов

IATA DGR Правила перевозки опасных грузов IATA

IATA Международная ассоциация воздушного транспорта ICAO Международная организация гражданской авиации

ICAO TI Технические инструкции Международной организации гражданской авиации

МКМПОГ кг Международный кодекс морских перевозок

опасных грузов, Килограммы

фунтов. LFL Фунты

LHV СЖИЖЕННЫЙ Нижний предел воспламеняемости,

Более низкая теплотворная способность, ГАЗ LTL м _3

Сжиженный нефтяной газ,

МДЖ Менее чем Полная загрузка грузовика,

мЛ Кубический метр,

Мегаджоули,

MM

миллилитры,

NFPA Миллиметры Национальная

NFPA 30B ассоциация противопожарной защиты

НОМ Кодекс NFPA для производства и хранения

ОМ аэрозольных продуктов Официальные нормы Мексики

Управление по безопасности опасных материалов

ORM-D

Маркировка для почтовых отправлений в Соединенных Штатах, которая

идентифицирует другие регулируемые материалы, предназначенные только для

OSHA внутренних перевозок Управление по охране труда

PG Группа упаковки

PHMSA Управление по безопасности трубопроводов и опасных материалов

PSIG Фунтов на квадратный дюйм по толщине

РЅМ Управление безопасностью технологического процесса

RAGAGEP Признанные и общепринятые передовые инженерные практики

RMP План управления рисками

RO/RO Установка /откатка

 RPN
 Номер приоритета риска

 SDS
 Паспорта безопасности

 SP
 Специальное разрешение

TDG Перевозка опасных грузов (Канада)

ТОГС Прицеп на платформе
ТО ТОЧКА Пороговое количество

США Министерство транспорта США

ООН Организация Объединенных Наций

UNMR Типовые правила Организации Объединенных Наций

UPS United Parcel Service

VMT Пройденные транспортным средством мили

Краткое описание

(OHMS) заключило контракт с командой Cambridge Systematics Team (CS Team) на завершение оценки аэрозольного риска . Целью этой оценки было определить, обеспечивает ли определение аэрозолей в Типовых правилах Организации Объединенных Наций (UNMR) уровень безопасности, эквивалентный определению Правил в отношении опасных материалов (HMR), используемому в Соединенных Штатах. В рамках этого исследования работа с заинтересованными сторонами включала встречи с экспертами РНМSA и представителями отрасли из Совета по безопасной транспортировке опасных предметов (COSTHA) и Ассоциации бытовых и коммерческих товаров (НСРА). Чтобы оценить риски, связанные с гармонизацией правил использования аэрозолей, команда CS подготовила оценку рисков, в которой сравнивались последствия транспортировки аэрозольных баллонов, содержащих "только газ", с баллонами, содержащими продукт и газ-вытеснитель, который используется для удаления жидкости, порошка или пасты. Процесс включал в себя завершение анализа режимов отказов и последствий (FMEA) и выработку рекомендаций по снижению рисков. На основе анализа данных об инцидентах и обсуждений с представителями отрасли, знающими об инцидентах с аэрозолями как при транспортировке, так и при хранении, команда CS выбрала семь типичных продуктов и пропеллентов для исследования. Эти продукты содержат комбинации легковоспламеняющихся и негорючих продуктов и пропеллентов. На основе анализа инцидентов с аэрозолями Команда CS разработала сценарии переноса, которые с наибольшей вероятностью могли привести к нежелательным последствиям с указанием коренных причин и следствий. Основные причины включали (1) падение упаковки, (2) смещение груза, (3) раздавливание внешними предметами, (4) проколы внешними предметами, (5) дефектный контейнер и (6) автомобильную аварию. Эффекты включали (1) воздействие на персонал или оборудование, (2) воспламенение вытекшего или высвобожденного содержимого (создание снаряда) и (4) насильственный выброс. Чтобы оценить различные транспортные сценарии, команда CS разработала обстоятельства с сюжетными линиями, чтобы проиллюстрировать ситуации, при которых могут произойти указанные сбои. Для каждого обстоятельства команда СS оценивала вероятные происшествия и стратегии смягчения последствий. Процесс FMEA включал изучение потенциальных последствий этих режимов отказа путем присвоения оценок возникновения, смягчения последствий и серьезности. Объединение результатов этих рейтингов позволило команде CS рассчитать номер приоритета риска (RPN) для ранжирования репрезентативных продуктов на основе различных сценариев. Этот процесс использовался для определения того, что значения теплоты сгорания (НОС) наиболее легковоспламеняющегося продукта и топлива (средства для удаления антивандальных следов) были такими же, как НОС для баллона с бутановым топливом, рассчитанного только на газ. Таким образом, Команда СЅ пришла к выводу, что транспортировка аэрозольных контейнеров с продуктом, содержащим только газ, представляет тот же уровень риска, что и аэрозоли, содержащие газовое топливо и другое содержимое. Основываясь на анализе данных об инцидентах и обсуждениях с представителями отрасли, знакомыми с инцидентами с аэрозолями как при транспортировке, так и при хранении, команда СЅ пришла к выводу, что риск воздействия токсичных или вызывающих коррозию веществ или риск удушья минимален, поскольку (1) в каждом аэрозольном баллоне находится небольшое количество газа; и (2) воздухообмен осуществляется в транспортных средствах, грузовых судах и на борту самолетов. По этим причинам, анализ рисков был сосредоточен главным образом на опасностях воспламенения, связанных с содержимым аэрозольных баллонов. Хотя результаты FMEA предполагают, что НОС был важным показателем воспламеняемости, для подтверждения результатов оценки риска следует провести аэрозольное тестирование. Это предоставит полезную информацию и данные, которые помогут PHMSA в рассмотрении нормотворческой деятельности, необходимой для предлагаемой гармонизации правил HMR и UNMR, касающихся перевозки аэрозолей.

Управление безопасности опасных материалов Администрации по безопасности трубопроводов и опасных материалов (PHMSA)

1.0 Введение

Команда CS составила этот Окончательный отчет для документирования результатов оценки аэрозольного риска, который включает основные моменты из обзора литературы и анализа цепочки поставок. Этот отчет включает результаты исследования и рекомендации, включая предлагаемые аэрозольные тесты, которые помогут PHMSA в будущих нормативных требованиях.

2.0 Работа с заинтересованными сторонами

В рамках обзора литературы команда CS работала с экспертами PHMSA, COSTHA и HCPA, чтобы лучше понять производство аэрозолей, их хранение, обращение с ними и транспортировку. Это включало посещение предприятия по производству аэрозолей, вебинары с представителями аэрозольной промышленности и участие в отраслевых совещаниях. В рамках процесса информирования отрасли команда CS представила методологию аэрозольного FMEA и запросила информацию для подтверждения этого подхода. В этом разделе описываются информационно-пропагандистские мероприятия с COSTHA, HCPA, отраслевыми экспертами, представителями Европейской федерации аэрозолей (FEA) и Британской ассоциации производителей аэрозолей (BAMA) и другими экспертами в области аэрозолей.

2.1 Onpoc COSTHA

СОЅТНА провела опрос своих членов в феврале 2019 года, задав конкретные вопросы, касающиеся транспортировки аэрозолей. Обратите внимание, что в данном исследовании термин "аэрозоли" относился к "заполненным аэрозольным распылителям, транспортируемым с производственных площадок в распределительные центры и потребителям". Опрос содержал 19 вопросов и был разослан всем 170 участникам, из которых 52 участника ответили на опрос с показателем отдачи в 30,6 процента. Членство в COSTHA включает в себя широкий спектр компаний, включая транспорт, упаковку, поставщиков, обучение, тестирование и производителей. Компании, которые ответили, поставляют аэрозоли "ежедневно, еженедельно, ежемесячно и редко", что привело к широкому спектру ответов участников.

2.1.1 Результаты опроса

Результаты опроса показывают, что члены организации перевозят аэрозоли несколькими видами транспорта, включая автомобильные дороги (86%), воздух (73%), суда (39%) и железнодорожный транспорт (18%). В целом, большинство респондентов (80 процентов) указали, что действующие правила не ограничивают возможности пользователей осуществлять доставку определенным способом. Более того, различия в отечественных и международных классификациях аэрозолей приводят к проблемам с маркировкой и информационными табло. Что касается международных классификациях аэрозолей приводят респондентов отправляют их воздушным транспортом, 21 процент - морским и 9 процентов - автомобильным. Что касается внутренних перевозок, то 82 процента аэрозолей перевозятся автомобильным транспортом и 18 процентов воздушным. Предполагаемые объемы ежегодно перевозимых аэрозолей варьировались в широких пределах на одного респондента - от 400 унций до 15 миллионов единиц. Ответы на отраслевой опрос помогли команде СS лучше понять сложности цепочки поставок аэрозолей для проведения анализа цепочки поставок. Результаты опроса также позволили получить представление о возможном воздействии гармонизации законодательства в области аэрозолей на различные отрасли промышленности. В то время как результаты опроса показали значимость общего аэрозольного транспорта объемов, частоты и видов транспорта, они не дают существенные выводы о рисках для аэрозольного транспорта.

Результаты опроса подтверждены Томом Фергюсоном и Лори Карри в КОШТЕ, 20 июня 2019 года.

Исследование COSTHA было сосредоточено на транспортировке и, следовательно, помогло в основном с разделом цепочки поставок.

2.2 Onpoc HCPA

Каждый год НСРА проводит исследование аэрозолей для отслеживания тенденций на рынке аэрозолей в США. В дополнение к предоставлению общего обзора отрасли аэрозолей, опрос помогает участникам направлять разработку продукта и принимать решения о продажах. Исследовательский комитет отдела аэрозольных продуктов НСРА сотрудничал с независимой сторонней фирмой Association Research, Inc. для проведения опроса, анализа данных и обобщения результатов. Индустрия аэрозольных изделий в США остается сильной и стабильной, согласно 67 ∞ежегодному исследованию НСРА по аэрозолям продукции под давлением.

2.2.1 Результаты опроса НСРА

Опрос НСРА включал несколько вопросов, касающихся риска, например, на вопрос о каких-либо выбросах аэрозолей при транспортировке, которые привели к травмам, пожарам или значительному материальному ущербу, опрошенные члены НСРА ответили: "Нет; аэрозольные продукты не самовоспламеняются, и [нам] неизвестно о каких-либо инцидентах при транспортировке аэрозольных продуктов, которые привели к травмам или значительному материальному ущербу." На вопрос, существует ли [была] разница в риске, связанном с перевозкой негорючих аэрозолей и легковоспламеняющихся аэрозолей, опрошенные члены НСРА ответили: "[Это] зависит от определения негорючего аэрозольного продукта - согласно DOT, негорючий аэрозоль все еще может гореть и использоваться в качестве топлива для внешнего пожара, тогда как действительно негорючий аэрозольный продукт, состоящий из ингредиентов, которые не могут подвергаться горению, не добавит масла в огонь. С учетом сказанного, количество энергии, которое было бы добавлено к огню от негорючего аэрозоля, способного к горению, было бы очень ограниченным, в то время как легковоспламеняющийся аэрозольный продукт, скорее всего, добавил бы больше энергии в случае внешнего пожара. В продуктах, классификцируемых как легковоспламеняющиеся аэрозольные продукты, существует диапазон того, сколько энергии они добавят в случае внешнего пожара, поэтому это будет зависеть в большей степени от ингредиентов, чем просто от классификации на легковоспламеняющиеся и негорючие." Сотрудники НСРА представили следующий обзор рынка аэрозолей в США, используя результаты опроса за последние пять лет, как показано в таблице 2.1 ниже.

Таблица 2.1 **США Производство аэрозольных**

баллонов *С 2013 по 2017 год*

Год	Общее количество алюминия Аэрозольные баллоны	Общее количество стали Аэрозольные баллоны	Общее количество аэрозольных баллонов Произведено в США.
2017	745,337,407	2,970,970,541	3,841,995,848
2016	810,822,088	3,019,937,902	3,754,415,533
2015	795,564,171	2,971,420,331	3,832,021,317
2014	837,993,673	2,894,461,704	3,796,782,274
2013	784,005,000	2,873,300,182	3,767,567,496

Источник: НСРА.

Результаты исследования показывают, что производство стальных аэрозольных баллонов превышает производство алюминиевых более чем в 3: 1 и что объемы производства аэрозольных баллонов существенно не изменились за последние пять лет.

2.3 Интервью с заинтересованными сторонами

В дополнение к двум отраслевым опросам команда СS провела интервью с заинтересованными сторонами более чем с 20 отраслевыми экспертами в период с июня по октябрь 2019 года. На ежегодном совещании HCPA в Вашингтоне, округ Колумбия, 3 мая 2019 года, Команда CS встретилась с Комитетом по международной гармонизации и задала вопросы, касающиеся обращения с аэрозольными баллонами и их транспортировки. На встрече COSTHA 14 октября команда CS узнала больше о методах и тенденциях отраслевых цепочек поставок, чтобы дополнить анализ. Эти интервью позволили получить важную информацию о цепочке поставок аэрозолей и рисках, связанных с транспортировкой аэрозолей. Опросы подтвердили , что большинство производителей аэрозолей используют аналогичные методы хранения и транспортировки аэрозолей с производственных предприятий розничным торговцам и покупателям. Риски, связанные с транспортировкой аэрозолей, за последние 50 лет были снижены благодаря усовершенствованию технологий производства, автоматизации и улучшенной транспортировке и обращению. Обобщенное изложение записей интервью с отдельными заинтересованными сторонами можно найти в Приложении В.

3.0 Цепочка Поставок аэрозоля

В этом разделе описывается анализ цепочки поставок аэрозолей, который был собран с помощью двух опросов, информационно-разъяснительной работы с многочисленными заинтересованными сторонами и других отраслевых ресурсов. Для целей данного исследования цепочка поставок аэрозоля начинается с наполнителя аэрозольных баллонов. Аэрозольные баллончики производятся на других предприятиях и отправляются в аэрозольные наполнители для наполнения продуктами и пропеллентами.

3.1 Транспортировка аэрозоля

Аэрозоли собираются и наполняются на производственных предприятиях. После заполнения аэрозоли упаковываются в коробки, которые собираются на поддоны для отправки грузовым транспортом на близлежащие склады. Так начинается цепочка поставок аэрозоля, описанная в этом разделе, включая транспортировку автомобильным, железнодорожным, воздушным и морским транспортом. В этом разделе описываются характеристики транспортировки аэрозоля с разбивкой по общей частоте, распространению, географии и способам транспортировки. Эта обобщенная цепочка поставок аэрозоля показана на рисунке 3.1.

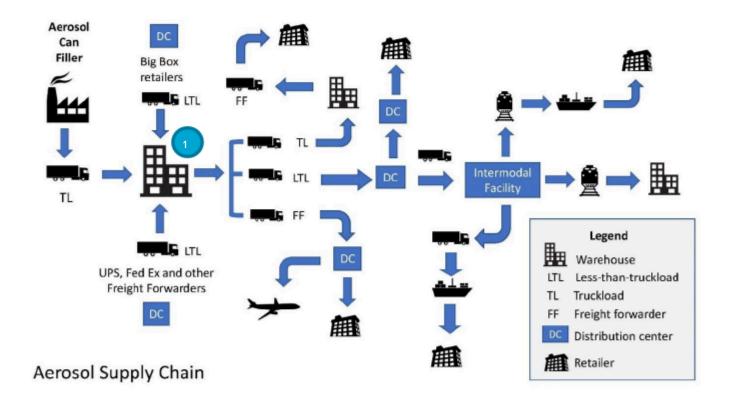


Рисунок 3.1 Цепочка Поставок Аэрозолей в США

Источник: Cambridge Systematics, интервью с производителями аэрозолей.

Способы транспортировки включают автомобильные, авиационные, железнодорожные и морские перевозки. При принятии решения об отправке определенным способом, внутренние перевозки имеют больше возможностей, поскольку они, как правило, имеют меньшие расстояния, чем международные перевозки, а к внутренним перевозкам предъявляется меньше таможенных и нормативных требований. Международная перевозка аэрозоля по воздуху ограничена как по количеству, так и из-за более высоких затрат. Несколько опрошенных аэрозольных компаний используют суда для транспортировки контейнеров на рынки Азии, Южной Америки и Европы.

3.2 Структура товарного потока аэрозолей

3.2.1 Методология

Команда CS разработала структуру товарных потоков, которая была разработана путем масштабирования правительственных данных об общих грузовых потоках в США по проценту опасных грузовых потоков и проценту опасных веществ, которые представляют собой аэрозоли. Платформа анализа грузоперевозок версии 4.1 (FAF4.1) данные 2012 года были использованы для составления картины транспортировки аэрозолей. Команда CS оценила национальные потоки аэрозолей по сети FAF4, предположив, что опасные вещества составляют примерно 12 процентов всех грузов, а аэрозоли составляют менее одного процента от всех опасных веществ.

3.2.2 Результаты анализа

На основе описанной выше методологии расчета объемов аэрозольного потока были проведены анализы в национальном и столичном масштабах, чтобы получить "моментальный снимок" цепочки поставок аэрозолей от производителя к потребителю.

Анализ в национальном масштабе

Предполагается, что в национальном масштабе объемы аэрозольного потока прямо пропорциональны общим объемам перевозок в сети FAF для грузовых автомобилей на основе методологии, описанной выше. Как следует из опроса COSTHA, 86 процентов производителей аэрозолей используют для транспортировки автомобильные виды транспорта. Другие виды транспорта включают воздушный (73 процента), морской (39 процентов) и железнодорожный (18 процентов). Воздушная перевозка аэрозолей обычно включает фармацевтические препараты и специальные продукты, которые необходимо доставить на следующий день. Объемы грузовых перевозок аэрозолей самые высокие в восточной части Соединенных Штатов, особенно на Среднем Западе, востоке Техаса и Северо-востоке. Ключевые коридоры с высоким уровнем трафика включают межштатную автомагистраль 95 между Вашингтоном и Бостоном (обычно называемую Северо-Восточным коридором), межштатную автомагистраль 80 между Нью-Йорком и Чикаго, а также межштатные автомагистрали 78, 81, 40 и 30, которые соединяют Нью-Йорк и Даллас с пунктами на запад. Несмотря на то, что эти итоговые данные получены из общего объема перевозок, данные хорошо согласуются с расположением предприятий по производству аэрозолей. Дополнительные объемы грузовых автомобилей с аэрозолями можно увидеть в коридоре межштатной автомагистрали 5, особенно в районах Сан-Диего, Лос- Анджелеса, Сан-Франциско, Портленда и Сиэтла из-за наличия более крупных населенных пунктов.

3.3 Упаковка для аэрозоля

В НМR США указано, что аэрозоли должны быть упакованы в прочную наружную упаковку (§ 173.306). Как определено в 49 CFR §171.8, прочная внешняя упаковка означает упаковку, которая "прочна, долговечна и сконструирована таким образом, что она сохранит свое содержимое при нормальных условиях транспортировки." UNMR предъявляет те же требования к упаковке, что и НМR, и требует, чтобы внешняя упаковка была "спроектирована и изготовлена таким образом, чтобы предотвращать чрезмерное перемещение аэрозоля и непреднамеренный выброс при нормальных условиях транспортировки". Как в UNMR, так и в НМR внешние упаковки для аэрозолей, которые поставляются не в ограниченных количествах, должны быть подвергнуты серии испытаний. Во-первых, они должны выдерживать испытание на падение с высоты 3,9 фута (1,2 метра). Во-вторых, они должны пройти испытание на штабелирование, при котором испытуемый образец подвергается воздействию силы, приложенной к его верхней поверхности, эквивалентной общему весу идентичных упаковок, которые могут быть уложены на него во время транспортировки. В-третьих, наружные упаковки подвергаются испытанию на вибрацию, при котором тестовые упаковки помещаются на машину, которая заставляет упаковку двигаться вверх и вниз в течение одного часа.

Оценка Аэрозольного Риска 4.0

Команда СЅ использовала результаты обзора литературы, интервью с заинтересованными сторонами, отчеты об инцидентах и скомпилированный сбор данных для подготовки оценки рисков, в которой сравнивались потенциальные последствия транспортировки аэрозольных баллонов, содержащих "только газ", с баллонами, содержащими газ-вытеснитель, который используется для удаления жидкости, порошка или пасты. Команда СЅ использовала устоявшиеся методы оценки рисков, основанные на междисциплинарном подходе, включая анализ цепочек поставок, моделирование событий и оценку воздействия на безопасность для оценки опасностей, связанных с контейнеризацией аэрозольных продуктов. Наконец, Команда СЅ определила связанные с этим последствия и возникающие в результате риски транспортировки аэрозоля. В этом разделе кратко излагаются элементы оценки рисков, основанные на FMEA, сравнительный анализ на основе FMEA и рекомендации по снижению рисков.

4.1 Определения - Оценка риска, анализ рисков и транспорт Сценарии

Нередко термины "оценка риска" и "анализ рисков" используются как взаимозаменяемые. Для этого исследования будет использоваться термин Оценка риска, который будет включать "анализ режимов отказа и последствий, который оценивает, как различные контейнеры будут работать в сценариях транспортировки".

Это согласуется с определением Общества по анализу рисков Оценка риска как "систематический процесс понимания природы риска, выражения и оценки риска с использованием имеющихся знаний".

Что касается "транспортных сценариев", то цель работы, заявленная в объеме работ, заключается в следующем:

"Определить, обеспечивает ли Типовые правила Организации Объединенных Наций по перевозке опасных грузов (UNMR) определение аэрозолей эквивалентный уровень безопасности определению НМР, используемому в Соединенных Штатах, и оценить потенциальные риски, связанные с приведением HMR в соответствие с UNMR". Следовательно, оценка рисков будет сосредоточена на сравнении рисков, подразумеваемых различиями в определении аэрозоля в HMR и определении в UNMR.

Оценка рисков FMEA 4.2

Как отмечалось выше, целью оценки рисков является определение того, соответствует ли транспортировка аэрозолей определению UNMR (т.е., которые могут быть заполнены исключительно газом) приводит к повышенному риску по сравнению с транспортировкой аэрозолей, соответствующих определению НМР. В частности, два определения таковы: Определение точечного НМR в США:

> *"Аэрозоль* означает изделие, состоящее из любого невозобновляемого сосуда, содержащего сжатый, сжиженный или растворенный под давлением газ, единственной целью которого является удаление неядовитого (другого

https://www.sra.org/sites/default/files/pdf/SRA%20Glossary%20-%20FINAL.pdf; "Глоссарий Общества по анализу рисков" Общество по анализу рисков, 2018.

чем материал подкласса 6.1, группа упаковки III) жидкий, пастообразный или порошкообразный и снабженный самозакрывающимся выпускным устройством, позволяющим выталкивать содержимое с помощью газа". Определение типовых правил ООН:

"Аэрозоль или аэрозольный распылитель означает изделие, состоящее из емкости, не подлежащей наполнению, отвечающей требованиям пункта 6.2.4, изготовленное из металла, стекла или пластмассы и содержащее газ, сжатый, сжиженный или растворенный под давлением, с жидкостью, пастой или порошком или без них, и оснащенное выпускным устройством, позволяющим выбрасывать содержимое в виде твердком постоящим чли вида за водетнения в порошка или в

Следует отметить, что эти определения отличаются от химического определения "аэрозоля" как " суспензии мелких твердых частиц и/или капель жидкости в газе". " В частности, "аэрозоль" представляет собой смесь содержащейся в нем жидкости, пасты или порошка либо с воздухом, либо с воздухом и газообразным вытеснителем, выделяемым из изделий, как определено в правилах.

Для ясности, аэрозоль"и аэрозольный распылитель будут рассматриваться как *синонимы* относящиеся к *непереполняемым емкостям*, когда аэрозоль в составе *химического* смысл подразумевается, в тексте будет использоваться "*актуальный* аэрозоль." Существуют два важных различия между терминами "аэрозоль" и "аэрозольный распылитель", применяемыми в HMR и UNMR.

Во-первых, в то время как НМR относится исключительно к изделиям, которые дозируют фактический аэрозоль, UNMR охватывает *оба* контейнера, которые дозируют фактический аэрозольные и те, которые просто распыляют газ - во всех случаях, при условии, что какие-либо изделия соответствуют соответствующим правилам.

Второе различие заключается в требованиях к упаковке и маркировке аэрозолей и транспортных средств с информационными табло, используемых для наземного транспорта. Важно отметить, что нет разницы между максимальным размером аэрозольного распылителя в HMR и UNMR: оба свода правил допускают аэрозольные распылители объемом до одного литра. Существуют некоторые незначительные различия в давлениях деформации и разрыва, которые можно увидеть в таблице 4.1.

Таблица 4.1 Правила использования аэрозольных баллонов в США, Канаде и Европе

			Павле	ый объем продукта	Минималь производи	ная ительность баллона	Минимальное	
Страна	Оценка	Ограничени по размеру банки	Давление (°C/F) (бар/ фунт/кв. дюйм)		Пряжка (бар Взрывная / фунт/къ. волна (бар/ фунт/к		Толщина пластины (мм / дюйм)	Маркировка
СШАи	Неспецификация	1 литр	54.4/130 9.66/140		дюйм) 9.66/140	дюйм) 14.48/210	N/A	Примечание
Канада –	ТОЧКА 2Р			11.03/160	11.03/160	16.55/240	0.18/0.007	TO4KA 2P +
	ТОЧКА 2Q	_		12.41/180	12.41/180	18.62/270	0.20/0.008	MFG ¹ TOYKA-2Q +
	Максимальное давление			12.41/180				Освобождение может быть полезным.
Европа ²	Минимальная банка	1 литр	50/122	6.7/97	10.0/145	12.0/174	N/A	Требуется перевернут
	"12 Бар"	_		8.0/116	12.0/174	14.4/209	N/A	эпсилон
	"15 Бар"			10.0/145	15.0/218	18.0/261	N/A	
	"18 Бар"			12.0/174	18.0/261	21.6/313	N/A	
	Максимальное давление	_		12.0/174	18.0/261	21.6/313	N/A	
Австралия	Минимальное может	1 литр	50/122	6.7/97	10.0/145	12.0/174	N/A	N/A
	Другое (12/15/18 Бар)			P = давление (номинальный балло	1,5 хР он)	1,8xP	N/A	
	Максимальное давление ³			12.0/174	18.0/261	21.6/313	N/A	
Япония4	Нет	1 литр ⁵	37/98	7,86/114	12.8/185	14.7/213	N/A	N/A
			50/122	Р=давление	1.5xP	1.8xP	N/A	
Аргентина	Стандарт		Неизвестен	ı	10/145	15/219	N/A	Неизвестно
	2P				11.4/163	17.2/245	N/A	Неизвестно
	2Q				12.8/185	19.4/281	N/A	Неизвестно
Корея	Нет		Неизвестнь	ІЙ	12.8/185	14.7/213	0.22/0.0085	N/A

Источник: Блюм, Джон Дж., доктор философии, 2012, презентация "Глобальные требования к прочности и эксплуатационным характеристикам аэрозольных баллонов".

¹ Символ или номер производителя должен быть зарегистрирован с помощью точки США.

Рейтинги Европы - это условность, а не закон. Закон основан на давлении при 50°C / 122°F, и минимальное прогибание банки в 1,5 раза превышает это давление, а минимальный разрыв - в 1,8 раза больше этого

³ давления. В Австралии также действует дополнительная норма "о негорючем сжатом газе" с максимальным давлением продукта 15 бар при 50°C / 122°F. Австралия принимает европейскую группировку баров 12/15/18.

Указанное в Японии давление является максимально допустимым. Для производительности, использования второй линии, но давление продукта не может превышать 7.86 бар/114 кг. на площади в датчике (фунтов на квадратный дюйм) при температуре 37кс/98°F.

Канистры объемом не более 1 литра не подпадают под действие Закона о безопасности газа в Японии.

⁶ Нет информации о давлении или температуре корейского продукта.

4.2.1 Что такое анализ режима отказа и последствий?

Как отмечалось выше, оценка риска должна включать FMEA. Конкретной целью FMEA является оценка того, "как различные аэрозольные баллоны будут работать в сценариях транспортировки"."

Для этого анализа используется *различные аэрозольные баллоны* в этолкуются главным образом как отличающиеся характеристики аэрозольных баллонов, которые могут быть результатом отличающегося содержимого, допускаемого в соответствии с определениями. Например, непереполняемый сосуд, содержащий негорючий газ (пропеллент) и легковоспламеняющуюся жидкость, может быть сопряжен с рисками, отличными от непереполняемого сосуда, содержащего только негорючий газ. По этой причине, В FMEA основное внимание уделяется репрезентативным примерам непереливаемых емкостей с различными типами содержимого, которые могут создавать различные профили опасности. Используемая здесь структура FMEA опирается на подход, отстаиваемый ASQ.3 Таким образом, шаги для этого подхода включают следующее:

Шаги FMEA

Определение основных функций устройства, системы или процесса. Это область применения FMEA.

Перечислите возможные способы, при которых эти функции могут выйти из строя (*режимы отказа*) группой экспертов и рецензентов.

Охарактеризуйте потенциальные последствия этих режимов отказа с получением численного, хотя и качественного, оценка серьезности (от 1 до 10, причем 10 являются наиболее серьезными) для каждого режима отказа.

причине присваивается рейтинг встречаемости (от 1 до 10, причем 10 являются наиболее частыми).

Перечислите потенциальные причины каждого режима отказа группой экспертов и рецензентов и каждый потенциальный

Оценить контролирует процесс и назначить рейтинг смягчение (от 1 до 10, причем 10 являются наименее обнаруживаемыми), который учитывает способность средств управления технологическим процессом обнаруживать заранее и / или смягчать или предотвращать сбои по каждой потенциальной причине.5

Используя рейтинги серьезности, возникновения и смягчения последствий, рассчитайте номер приоритета риска (RPN), чтобы обеспечить руководство по ранжированию потенциальных сбоев в порядке их устранения.

Следует также отметить, что предыдущие факторы (функции, режимы отказа и оценки серьезности, возникновения и смягчения последствий) пересматриваются итеративно по мере проведения FMEA, чтобы получить внутренне согласованный результат.

В рамках этой концепции ожидается, что ключевые функции, способы отказа и последствия (более подробно обсуждаемые ниже) будут в целом аналогичными в каждом транспортном сценарии. Однако, поскольку разные сценарии могут допускать или подразумевать разное содержимое, ожидается, что степень серьезности может варьироваться от одного сценария к другому.

https://asq.org/quality-resources/fmea.

Обратите внимание, что это частота возникновения причины, а не обязательно частота результирующего сбоя. Принимаемые меры контроля на месте могут привести к эффективному устранению причины, предотвращая

любые неблагоприятные последствия или сбой. В стандартной номенклатуре ASQ это оценка "обнаружения".

4.2.2 Почему был выбран режим отказа и проведен анализ последствий?

Особым преимуществом подхода FMEA является то, что его можно использовать даже при наличии ограниченных исторических данных для справки. Во-первых, это позволяет провести прозрачную экспертную оценку относительных рисков, используя экспертное суждение в качестве прокси для подробных исторических данных. Это одна из причин, по которой выше была отмечена "внутренняя согласованность": даже если абсолютная величина рисков подвержена неопределенности, относительные опасности, оцененные для того или иного сценария, могут быть идентифицированы. Во-вторых, поскольку сравнения могут быть сделаны с любыми существующими ограниченными историческими данными об инцидентах, на экспертное заключение можно положиться, чтобы гарантировать, что выводы FMEA хотя бы приблизительно соответствуют этим данным.

4.3 Продукты, подлежащие рассмотрению в FMEA

Для проведения FMEA было необходимо выбрать репрезентативные продукты для оценки, наряду с видами отказов и первопричинами. Изучить относительные риски, связанные с транспортировкой аэрозольных баллонов, соответствующих UNMR, но не НМР, и заполненных только газом, по сравнению с рисками, связанными с транспортировкой аэрозольных баллонов, соответствующих HMR и, следовательно, заполненных газовым пропеллентом и команда CS выбрала для анализа жидкость, порошок или пасту репрезентативные продукты. Эти продукты созданы по образцу обычных потребительских и промышленных продуктов в аэрозольных баллонах, которые содержат либо только газовое топливо, либо топливо и содержимое. Для наглядности команда CS включила примеры, в которых и топливо, и содержимое являются легковоспламеняющимися или негорючими. Когда в примерах присутствуют легковоспламеняющиеся вещества или пропелленты, были выбраны образцы с более высокой воспламеняемостью, чтобы представлять более существенный риск, которые, как считается, представляют наибольшую опасность при транспортировке. Некоторые аэрозоли могут содержать агрессивные вещества, такие как чистящие средства для духовок. Согласно правилам, в аэрозольных баллонах содержатся только низкоактивные токсичные материалы (разрешена только группа упаковки III), поэтому токсичные аэрозоли не учитывались при анализе. Однако некоторые аэрозоли содержат токсичные жидкости, включая хлороформ, № ООН 1888 и метиленхлорид (общее название дихлорметан). Метиленхлорид, который широко используется в качестве промышленного растворителя и может быть найден в некоторых аэрозолях и пестицидных продуктах. Вопрос, касающийся хлороформа или любой другой токсичной жидкости, выходит за рамки анализа рисков, поскольку эти материалы уже разрешены к транспортировке в соответствии с HMR. Группе СS было поручено рассмотреть последствия принятия определения аэрозолей в соответствии с MP ООН, которое не требует, чтобы содержимое содержало жидкость, порошок или пасту. Команда СS не рассматривала случайного выброса аэрозоля, наполненного токсичными газами, поскольку HMR и MR ООН запрещают наполнять аэрозоли токсичными газами. Для того чтобы токсичный газ или любой другой опасный материал был разрешен к перевозке в аэрозольном баллоне, в перечне в таблице опасности для данного продукта необходимо указать "306" в колонке 8А Таблицы опасных материалов (НМТ). В НМТ отсутствуют токсичные газы, в колонке 8А которых указан номер 306. Их запрещено перевозить в аэрозольном баллоне. Хотя HMR явно не разрешает заправлять токсичный газ исключительно в аэрозольный распылитель, нет положений, запрещающих использование токсичного топлива. Основываясь на анализе данных об инцидентах и обсуждениях с представителями отрасли, знакомыми с инцидентами с аэрозолями как при транспортировке, так и при хранении, команда СS пришла к выводу, что риск воздействия токсичных или вызывающих коррозию веществ или риск удушья минимален, поскольку (1) в каждом аэрозольном баллоне находится небольшое количество газа; и (2) воздухообмен осуществляется в транспортных средствах, грузовых судах и на борту самолетов. По этим причинам анализ рисков был сосредоточен главным образом на связанных с воспламенением опасностях

с учетом содержимого аэрозольных баллонов. Дальнейший анализ количества содержимого аэрозольного распылителя, необходимого для создания кислорододефицитной среды, приведен в Приложении G: Воспламеняемость и условия кислорододефицита аэрозолей. Обратите внимание, что в большинстве случаев продукция типа "только для газа" поставляется в соответствии с HMR по специальному разрешению. Рассмотренные примеры продукции приведены в таблице 4.2.

Таблица 4.2 Продукты, рассмотренные в режиме отказа и анализе последствий

Топливо	Содержание	Пример
Легковоспламеняющийся	Легковоспламеняющаяся жидкость	Средство для удаления антивандальных следов
Негорючий	Легковоспламеняющаяся жидкость	Средство для очистки деталей
Легковоспламеняющийся	Инсектицидная жидкость /паста	тормозов Аэрозольный инсектицид Обработка
Негорючий	Негорючая жидкость / паста	автоматического кондиционера
	Легковоспламеняющийся (только	Бутановое топливо
	газ) Легковоспламеняющийся (только	Гидрофторуглерод (HFC) -152a Воздушная пылеуловитель
	газ) Негорючий (только газ)	Воздушная пылеуловитель R-134a

Источник: Команда CS, вклад отрасли.

Примечания к таблице 4.2:

Рассмотренные продукты не претендовали на исчерпывающий характер и были предназначены для представления продуктов, разрешенных в соответствии с текущим определением аэрозоля в HMR, и тех, которые были бы разрешены в соответствии с определением, согласованным с UNMR. Продукты были выбраны с учетом наихудшего случая с точки зрения опасности на основе оценки того, что наибольшую опасность представляет воспламеняемость. Бутановое топливо не является аэрозолем ни в соответствии с определениями HMR, ни UNMR, поскольку у него нет устройства для выпуска . Однако содержимое рассматривается при анализе как пример потенциального содержимого аэрозольного распылителя в случае согласования определения аэрозолей в HMR с определением в UNMR. При обсуждении легковоспламеняющегося содержимого важным фактором является теплота сгорания содержимого. Теплота сгорания (также называемая теплотворной способностью, энергетической ценностью или теплотворной способностью) - это количество тепла, выделяемое при сгорании определенного количества вещества. Вещества с более высокой теплотой сгорания, такие как углеводороды, выделяют больше энергии при сгорании, что приводит к повышенной опасности в случае пожара или взрыва. И наоборот, аналогичные количества веществ с меньшей теплотой сгорания, таких как углекислый газ, представляют меньшую опасность в случае пожара из-за меньшего количества выделяемой энергии. Каждому продукту соответствует химическая теплота сгорания в зависимости от его содержимого, поскольку общая пожароопасность аэрозольного продукта в металлическом контейнере зависит (среди прочего) от химического состава комбинированных элементов. Использование термина "теплота сгорания" требует некоторых определений, поскольку различные группы используют этот термин по-разному. Строго говоря, теплота сгорания - это отрицательная энтальпия сгорания (н). То есть количество энергии, выделяемой в результате реакции горения, при которой реагенты (например, топливо и кислород) и продукты (например, СО и Но)

рассматриваются при одних и тех же стандартных условиях. Инженеры также используют термины "более высокий нагрев" г

значение (HHV) и более низкая теплотворная способность (LHV). HHV - это, по сути, отрицательная энтальпия сгорания (- μ). LHV - это просто HHV за вычетом энергии, необходимой для испарения образующейся воды.

NFPA использует еще одно определение. NFPA определяет теплоту сгорания в Приложении Н NFPA 30В как " произведение теоретической теплоты сгорания и эффективности сгорания, обычно меньшей 1,0 и обычно « около 0,95, или 95 процентов". NFPA классифицирует аэрозоли как уровень 1, 2 или 3 на основе того, что они описывают как "химическую теплоту сгорания", при этом уровень 3 является наиболее легковоспламеняющимся и, следовательно, наиболее опасным. В последующих анализах для приблизительного определения теплоты сгорания используется более низкая теплотворная способность, или LHV, и эти два термина используются взаимозаменяемо. LHV представляет собой среднее значение между значениями NFPA и HHV. Кроме того, поскольку при сжигании рассматриваемых видов топлива образуется водяной пар, этот водяной пар не следует учитывать при определении теплосодержания продуктов. Характеристики каждого продукта приведены в таблице 4.3.

Таблица 4.3 Характеристики примеров продуктов, рассмотренных в режиме отказа, и анализ последствий

Продукт	Размер контейнера [,]	Теплота сгорания (энергия на контейнер) ²
Легковоспламеняющийся	16 унций (454 г)	HHV: 17 Мегаджоулей (МДЖ) на дозатор
(средство для удаления вандальных следов)		LHV: 15 МДЖ NFPA: 14 МДЖ
Негорючий / воспламеняющийся	14-29 унций (397-822 г)	HHV: 11-23 МДЖ/дозатор
(средство для очистки деталей тормозов)		LHV: 11-22 мдж
		NFPA: 10-20 мдж
Легковоспламеняющийся / инсектицид	16,0 унции (454 г)	ннv: 9 мДж / дозатор
(аэрозольный инсектицид)		LHV: 8 МДЖ
		NFPA: 6 МДЖ
Негорючий (автоматическая обработка	3,0 унции (85 г)	ННV: 1,6 МДЖ / дозатор
кондиционером)		LHV: 1,5 МДЖ
		NFPA: 1,5 мдж
Легко воспламеняется	3,0-10,0 унции (85-284 г)	HHV: 4,2-14,1 МДЖ / дозатор
(Только газ-бутановое топливо)		LHV: 3,9-12,9 мдж
		NFPA: 3,7-12,3 мдж
Легковоспламеняющийся материал	12 унций (340 г)	ННV: 3,1 МДЖ/дозатор
(Только газ-HFC-152a Air Duster)		LHV: 2,7 мдж
		NFPA: 2,1 мДж
Негорючий	10 унций (284 г)	HHV: 0 МДЖ / дозатор
(Только для газа-R-134a Air Duster)		LHV: 0 МДЖ
		NFPA: 0 МДЖ

Источник:

Анализ команды CS, 2019.

 $https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html \\$

⁶ Могут существовать очень небольшие различия из-за незначительно отличающегося выбора стандартных условий.

Это полезно для практических применений, когда вода теряется в выхлопных газах в виде пара; она уносит часть ННV, делая эту энергию недоступной для работы.

⁸ Национальная ассоциация противопожарной защиты, *30В Приложение Н*, 2019.

Примечания: Расчетное процентное содержание компонентов по массе выбрано таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания. Высокая теплота сгорания.

- Указанные размеры контейнеров соответствуют размерам контейнеров для реальных продуктов, представленных
- на рынке. В качестве теплоты сгорания при анализе используется LHV.

4.3.1 Обсуждение размеров продуктов

Продукты, рассмотренные в FMEA, являются репрезентативными для реальных продуктов, поэтому размер упаковки варьируется. Однако важно обсудить потенциальную теплоту сгорания для каждого продукта в случае максимального размера контейнера (один литр). В таблице 4.4 показана теплота сгорания типичных топлив; физическое состояние каждого топлива при температуре 130 ° F и 140 фунтах на квадратный дюйм (фунтов на квадратный дюйм); максимальное содержание каждого топлива в однолитровом контейнере при каждом из трех давлений: 140, 160 и 180 фунтов на квадратный дюйм (соответствует нормативам давления для баллонов 2Р и 2Q, не соответствующих спецификации, соответственно); и общая энергия в каждом контейнере при каждом давлении. Общая энергия в каждом контейнере равна произведению теплоты сгорания и максимального объема содержимого. Как видно из таблицы, в литровом контейнере бутана содержится в общей сложности от 25,4 до 26,7 МДЖ (в зависимости от того, является ли это і-бутан или н-бутан). Эта энергетическая ценность аналогична энергетической ценности большого контейнера средства для очистки деталей тормозов (22 МДЖ), продукта, который представлен на рынке и поставляется в виде аэрозоля. Большой очиститель для деталей тормозов содержит 22 унции продукта, что эквивалентно примерно 0,62 литрам. Это говорит о том, что контейнер для очистки тормозных деталей аналогичного размера будет обладать такой же (если не большей) общей энергией, что и контейнер, заполненный только бутаном, и представлять аналогичную опасность при транспортировке в случае пожара. Это будет расширено в FMEA, начиная с раздела 4.9. Дополнительная информация о выборе этих топлив представлена в Приложении F.

Таблица 4.4 Максимальное содержание газообразного топлива в литровом аэрозольном баллончике для типичных топлив

Компоненты топлива	Теплота Сгорание при 130°F, при (кДж/г)	Газ или жидкость при 140 фунтов на квадратный дюйм	при 140 фунтов на квадратный дюйм	Макс Содержание Содержание Energy в 1 л при аt 140 п фунтов на квадратный д	И180 фХИТ80 180 Я диняіські я Р		Bcero (MIO)	Bcero (MIO)
			(r)	(g)	(g)	(MIO)	(MIO)	(1410)
Метан (74-82-8)	55.5		6.3	7.1	7.9	0.3	0.4	0.4
Пропан (74-98-6)	50.3	Газ Газ	17.3	19.5	21.7	0.9	1.0	1.1
і-бутан (75-28-5)	50.0	Жидкость	~508	~508	~508	25.4	25.4	25.4
н-бутан (106-97-8)	49.5		~540	~540	~540	26.7	26.7	26.7
1,1-дифторэтан	18.5	жидкий Газ	25.6	29.2	32.5	0.5	0.5	0.6
(75-37-6)								
Азот (7727-37-9)	0.0	Газ	11	12.5	13.8	0.0	0.0	0.0
CO2 (124-38-9)	0.0	Газ	17.2	19.5	21.7	0.0	0.0	0.0
1,1,1,2-тетрафторэтан (811-97-2)	0.0	Газ	40	45.1	50.3	0.0	0.0	0.0

Анализ команды CS, 2019. Источник:

4.3.2 Обсуждение диапазонов воспламеняемости

Диапазон воспламеняемости - это диапазон концентрации газа или пара, который будет гореть при использовании источника воспламенения . Для осуществления взрыва необходимо выполнить три основных требования.:

- . легковоспламеняющееся вещество топливо
- окислитель кислород или воздух
- источник воспламенения искра или сильный нагрев

Ниже допустимого уровня воспламеняемости смесь слишком жидкая, чтобы гореть, а выше верхнего предела воспламеняемости - смесь слишком жирная, чтобы гореть. Пределы обычно называются "Нижним пределом воспламеняемости" (LFL) и "Верхним пределом воспламеняемости" (UFL).

 Таблица 4.5
 Диапазоны теплоты сгорания и воспламеняемости для репрезентативных топлив

- Компоненты топлива	Теплота сгорания n (кДж/г)	Газа или жидкости при 130°F, при 140°C psig	Нижнем пределе воспламеняемости (LFL), % объема воздухом	Верхнем пределе воспламеняемості Предельный (UFL) % объем по воздуху
Метан (74-82-8)	55.5	Газ	4.4	16.4
Пропан (74-98-6)	50.3	газ	2.1	10.1
і-бутан (75-28-5)	50.0	жидкость	1.80	8.44
н-бутан (106-97-8)	49.5	Жидкость	1.86	8.41
1,1-дифторэтан (75-37-6)	18.5	Газ	6	11
Азот (7727-37-9)	0.0	Газ	NA	NA
CO2 (124-38-9)	0.0	Газ	NA	NA
1,1,1,2-тетрафторэтан (811-97-2)	0.0	Газ	NA	NA

Источник: Анализ команды CS, 2020.

Важно, чтобы помещения, в которых хранятся легковоспламеняющиеся газы, хорошо вентилировались. При проектировании систем вентиляции учитывайте удельный вес фактического газа. Газовая смесь в результате утечки не будет однородной, и более легкие газы концентрируются вдоль потолка. Тяжелые газы концентрируются вдоль пола. Вентиляция, естественная или механическая, должна быть достаточной для ограничения концентрации легковоспламеняющихся газов или паров до максимального уровня в 25% от их "Нижнего предела взрывоопасности" (LEL / LFL).

_

Инженерный инструментарий, https://www.engineeringtoolbox.com/explosive-concentration-limits-d 423.html

4.3.3 Режимы отказа

Чтобы определить возможные способы отказа, команда CS оценила функции, для выполнения которых предназначен аэрозольный баллон . Команда CS определила, что назначение аэрозольных баллонов - хранить их содержимое. Когда аэрозольный баллон не содержит своего содержимого, считается, что он вышел из строя. Сбой может произойти по любому количеству потенциальных причин, и сбой также может привести к любому количеству потенциальных последствий, которые рассматриваются в последующих подразделах.

4.4 Первопричины и сопутствующие события

В рамках оценки рисков, связанных с транспортировкой аэрозолей, команда СS собрала и проанализировала данные об инцидентах, связанных с транспортировкой аэрозолей, как в Соединенных Штатах, так и в Канаде. Эти транспортные инциденты будут называться "инцидентами" или "инцидентами с аэрозолями" в оставшейся части этого отчета. Данные об инцидентах в США были получены из поиска PHMSA Hazmat Incident Report Search. «Данные по Канаде были предоставлены Transport Canada, правительственным агентством, ответственным за политику транспортировки опасных грузов в Канаде. Данные из обоих источников касались инцидентов, связанных с опасными материалами, классифицированными как UN1950, код ООН по опасным материалам для аэрозолей. Команда CS запросила у PHMSA данные об инцидентах, связанных с аэрозольными баллонами, наполненными исключительно газом (например, аэрозольными пылеуловителями). Соответствующих данных доступно не было, хотя почти каждое специальное разрешение требует сообщать об инцидентах, включая требование о том, что каждый получатель гранта должен уведомлять Заместителя администратора по безопасности опасных материалов в письменной форме о любом инциденте, связанном с упаковкой или операцией, проводимой в соответствии с условиями этого специального разрешения. Это может означать либо то, что подобные инциденты являются редкостью во время транспортировки, либо то, что получатели гранта не сообщают об этом надлежащим образом. Команда СЅ обработала данные из обоих источников, чтобы лучше понять способы отказа, последствия и частоту зарегистрированных инцидентов, связанных с аэрозольными баллонами с выделением вещества (например, газа, жидкости, порошка или пасты). После очистки данных с 1988 по 2018 год в Transport Canada было зарегистрировано 15 инцидентов с аэрозолями и 36 - в РНМЅА. 2 Основываясь на анализе инцидентов в обоих источниках, команда СЅ определила общие коренные причины, по которым их не включили в FMEA. Эти способы отказа приведены в таблице 4.5 с указанием общих последствий каждого из них, классифицированных только как разлив, взрыв или пожар. Стоит отметить, что в США не было инцидентов, приведших к взрыву, и только один (с неизвестной причиной) в Канаде. Более того, нет свидетельств каких-либо инцидентов, связанных с транспортировкой аэрозолей в США или Канаде, приводящих к травмам или смертельным исходам в результате удушения, и любые разливы ядовитых или коррозийных веществ не привели к травме, требующей чего-то большего, чем промывание пораженного участка или незначительная первая помощь. Кроме того, основываясь на выявленных возможных способах отказа, команда CS не считает, что в результате инцидента, связанного с поставками аэрозолей, могло выделиться достаточное количество газа, которое могло бы представлять опасность удушения, или достаточно значительный выброс токсичного материала подкласса 6.1, PG III, для создания токсичного

https://portal.phmsa.dot.gov/analyticsSOAP/saw.dll?Информационная панель.

Специальные разрешения содержат пункт, который гласит: "Поставки или операции, проводимые в соответствии с этим специальным разрешением, подпадают под требования к сообщению об инцидентах с опасными материалами, указанные в 49 CFR §§ 171.15 "Немедленные уведомления" об инцидентах с определенными опасными материалами и 171.16 "Подробные отчеты об инцидентах с опасными материалами". Кроме того, получатель (ы) этого специального разрешения должен(должны) уведомить Заместителя администратора по безопасности опасных материалов в письменной форме о любом инциденте, связанном с упаковкой, отправкой или операцией, проведенной в соответствии с условиями этого специального разрешения." Дополнительную информацию о процессе очистки данных можно найти в разделе отчета "Цепочка поставок".

опасность (см. Приложение G). Поскольку не было никаких свидетельств каких-либо инцидентов, связанных с транспортировкой аэрозолей в США или Канаде, приведших к травмам или смертельным исходам в результате удушения, а также любых разливов ядовитых или коррозийных веществ, команда CS сосредоточила внимание на проблемах воспламеняемости при транспортировке аэрозолей. Это также было подтверждено в ходе общения с отраслевыми экспертами и представителями компаний-производителей аэрозолей, ни один из которых не смог задокументировать какие-либо инциденты при транспортировке или хранении, связанные с удушьем или разливом ядовитых или коррозийных веществ. По этим причинам и на основе обсуждений с представителями отрасли было определено, что наиболее значительным риском, создаваемым аэрозолями, является пожар. На основе анализа инцидентов и обсуждения с представителями отрасли были рассмотрены следующие возможные причины выхода из строя аэрозольного баллона:

- . Упавшая упаковка.
- Смещение груза.
- Раздавливание внешним предметом.
- Проколы внешним предметом.
- . Неисправный контейнер.
- Автомобильная авария.

Способы отказа и последствия в данных об инцидентах с аэрозолями в Соединенных Штатах и Канаде Таблица 4.6

		Последствия				
		Канада			США	
Первопричиня	Только утечка	Взрыв1	Пожар	Только утечка	Взрыв1	Огонь
Повреждена крышка	0	0	0	2	0	0
Крышка не закреплена должным образом	0	0	0	10	0	0
Контейнер, пробитый другими	1	0	0	2	0	0
предметами Неисправный	0	0	0	1	0	0
контейнер Смещение груза	3	0	0	0	0	0
Іаружная упаковка упала или иным образом	2	0	0	3	0	1
овреждена, Наехала на вилочный погрузчик,	1	0	0	0	0	0
статическое электричество от конвейерной ленты,	0	0	0	0	0	2
орожно-транспортное происшествие,	1	0	0	1	0	0
Геизвестное	3	1	2	7	0	6
Іругое	0	0	1	1	0	0
Всего	11	1	3	27	0	9

Источники:

Команда CS, Департамент транспорта США, Управление по безопасности трубопроводов и опасных материалов, База данных инцидентов с опасными материалами https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch/Welcome.aspx. Транспорт Канады, "Краткий отчет об аварии: период с 1988 по 2018 год включительно", электронное письмо Трейси Бойси Бобу Ричарду, 7 мая 2019 года. В период с

1988 по 2018 год в Соединенных Штатах не было ни одного инцидента с аэрозолями, приведшего к взрыву, и только один - в Канаде.

4.5 Анализ режимов отказов и последствий Оценки вероятности возникновения

На основе анализа данных об инцидентах с аэрозолями в США и Канаде, а также обсуждений с отраслевыми экспертами каждому режиму отказа был присвоен рейтинг аварийности в рамках FMEA. Рейтинг аварийности варьируется от 1 до 10, при этом единица указывает на то, что режим сбоя никогда не возникает, а 10 - на то, что он возникает всегда. Рейтинги от 1 до 10 отражают частоту встречаемости между "никогда" и "всегда" и основаны на обсуждениях с отраслевыми экспертами. Они отражают приблизительное количество происшествий в день и были выбраны для получения репрезентативного диапазона частот с достаточной дифференциацией для осмысленной классификации сценариев. Полный список используемых здесь оценок аварийности приведен в таблице 4.6.

Таблица 4.7 Оценки аварийности при анализе режима отказа и последствий

Оценка	Определение
аварийности 1	Никогда не встречается
2	1 на 1000 дней
3	1 на 500 дней
4	1 на 100 дней
5	1 раз в 50 дней
6	1 раз в 10 дней
7	1 раз в 5 дней
8	Всегда
9	встречается 1 раз в день 10
10 Источник:	раз в день

CS Team, 2019.

4.6 Оценки серьезности анализа режима отказа и последствий

В рамках FMEA команда CS разработала рейтинговую шкалу серьезности инцидентов, происходящих во время транспортировки аэрозолей. Эта рейтинговая шкала была основана на данных PHMSA и Transport Канады об инцидентах с аэрозолями и отчетах об инцидентах, предоставленных FEA. 13 Последствия варьируются от небольшого выброса содержимого, без создания опасности, до катастрофических, связанных с многочисленными человеческими жертвами, обрушением здания с пассажирами и т.д. На основе анализа данных об инцидентах и обсуждений с представителями отрасли в FMEA были рассмотрены следующие последствия :

- Персонал или оборудование подвергаются воздействию просочившегося высвобожденного содержимого.
- Просочившееся или высвобожденное содержимое воспламеняется.
- Создается снаряд (например, консервная банка "ракеты").
- Сильный выброс (консервная банка взрывается, выбрасывая высокоскоростные осколки).

Hanpuмep: https://www.abc.net.au/news/2019-04-06/driver-killed-in-south-eastern-freeway-truck-crash/10978140 и https://www.wdrb.com/story/39003762/truck-carrying-axe-body-spray-explodes-in-texas/.

Следует отметить, что нет никаких записей об инцидентах с аэрозолями, которые были бы классифицированы как катастрофические. Многие случаи, подобные перечисленным выше, были получены на основе фактических последствий, указанных в рассмотренных данных об инцидентах, но такие случаи, как множественные смертельные случаи, были включены для целей оценки. Вероятность возникновения этих серьезных инцидентов маловероятна, и поэтому они будут иметь низкий рейтинг аварийности в FMEA. Дополнительная информация об условиях, необходимых для воспламеняемости и дефицита кислорода для различных веществ, представлена в Приложении G. Используемые здесь оценки степени тяжести приведены в таблице 4.7.

Таблица 4.8 Оценки серьезности режима сбоя и последствий анализа

Рейтинг	Определение	Пример (ы) / Описание	_
серьезности 1	Незначительный	Небольшое высвобождение, содержащееся во внешней упаковке, опасности не создается	1
2	Незначительный инцидент	Опасность создана, но без последствий.	<u>, </u>
3	Одна незначительная травма	Незначительная = только первая помощь.	_
4	Множественные незначительные травмы		
5	Одна тяжелая травма	Серьезная = лечение в больнице.	_
6	Множественные тяжелые травмы		
7	Инцидент, связанный с пожаром, вызвавшим	Любой инцидент, при котором может произойти взрыв аэрозоля, ракет или осколков, или	
	травмы, материальный ущерб, или перекрытие шоссе	когда возникает пожар, приводящий к травмам или материальному ущербу, или перекрытие шоссе	
8	Влияние крупных инфраструктурных операций	Изменено выполнение полетов; пожар на борту воздушного судна; проводится оценка состоян более чем на один час; дороги закрыты	ния общественного по
9	Смертельный исход		_
10	Катастрофический	Многочисленные жертвы; обрушение здания вместе с жильцами; авиакатастрофа	_

Источник: CS Team, 2019, Данные об инцидентах PHMSA и Transport Canada.

4.7 Анализ режимов отказов и их последствий С Оценкой Степени смягчения последствий

Последним компонентом FMEA является рейтинг смягчения последствий, который представляет собой оценку вероятности того, что любой данный сбой приведет к быть смягченным. Это может произойти путем обнаружения неисправности до начала какого-либо воздействия или путем локализации неисправности, предотвращая или уменьшая любое неблагоприятное воздействие. Подобно рейтингам серьезности и возникновения, рейтинг смягчения последствий варьируется от 1 до 10, при этом один всегда смягчается, а 10 - никогда. Рейтинги от 1 до 10 отражают показатели смягчения последствий между "всегда" и "никогда" и основаны на обсуждениях с экспертами отрасли. Они отражают приблизительную норму смягчения последствий для каждого контейнера и были выбраны для получения репрезентативного диапазона норм с достаточной дифференциацией для осмысленной классификации сценариев. Полный диапазон используемых здесь оценок смягчения последствий показан в таблице 4.8.

В терминологии ASQ это рейтинг "обнаружения" (D).

Таблица 4.9 Анализ режима отказа и последствий С оценкой степени смягчения последствий

Оценка	Определение			
степени смягчения 1	Всегда смягчается			
2	1 из 10 000 случаев смягчения последствий побега			
3	смягчение последствий побега 1 на 1000 (обычно смягчается)			
4	1 на 500 смягчение последствий побега			
5	1 на 100 смягчение последствий побега (часто смягчается)			
6	1 на 50 смягчение последствий побега			
7	1 на 10 смягчение последствий побега (в основном смягчается)			
8	смягчение последствий побега 1 из 5			
9	смягчение последствий побега 1 из 2			
10	Никогда не смягчалось			

Источник: Команда CS, 2019 год.

Смягчение последствий может зависеть от таких факторов, как требования к упаковке или тестированию, которые часто определяются нормативными актами.

Комбинация частоты возникновения и частоты смягчения последствий указывает на общую частоту, с которой инцидент приводит к указанному результату. Например, рейтинг происшествий, равный 5 (1 на 50 дней), и рейтинг мер по смягчению последствий, равный 4 (1 на 500 мер по смягчению последствий побега), будет указывать на то, что исход инцидента, как ожидается, будет происходить раз в 2500 дней или примерно раз в семь лет.

4.8 Объясненный RPN

Как только рейтинг серьезности, рейтинг возникновения и рейтинг смягчения последствий были присвоены конкретной проблеме-кандидату, они умножаются вместе, чтобы определить RPN проблемы-кандидата. Поскольку каждая оценка основана на шкале от 1 до 10, RPN варьируется от одного до 1000 (10 х 10 х 10), причем наивысшая оценка указывает на то, что конкретная проблема-кандидат возникает всегда, никогда не устраняется и носит катастрофический характер. Поскольку три рейтинга умножаются, существует несколько комбинаций рейтингов, которые могут привести к одному и тому же RPN. Например, проблема-кандидат с оценкой серьезности 10, оценкой возникновения 2 и оценкой устранения RPN 40, равно значению проблемы-кандидата с оценкой серьезности 2, оценкой возникновения 2 и оценкой устранения 10. Однако было бы логично сделать вывод, что первая проблема-кандидат вызывает большую озабоченность, чем вторая, учитывая ее катастрофическую серьезность, по сравнению с проблемой низкой серьезности, которая никогда не устраняется. Фактически, первая проблема может быть определена как более серьезная, чем проблема с более высоким RPN, учитывая катастрофическую серьезность ее исхода. По этой причине проблемы могут быть повышены или понижены в должности для большего или меньшего рассмотрения на основе экспертной оценки относительных рисков каждой из них.

[&]quot;Всегда принимать меры предосторожности" означает, что даже в случае повреждения или компрометации аэрозольного распылителя меры по смягчению последствий (например, прочная внешняя упаковка, защита клапанов, предохранительные элементы сосудов под давлением) уменьшают опасность, не вызывая неблагоприятных последствий.

4.9 Анализ режима отказа и последствий для отдельных аэрозольных продуктов, основных причин и сценариев воздействия

Для FMEA анализ всех возможных комбинаций продуктов, коренных причин и следствий быстро привел бы к рассмотрению сотен сценариев, многие из которых были бы почти неотличимы друг от друга . Даже с учетом семи продуктов, шести причин отказа и четырех последствий отказа, рассмотренных выше, получится 168 (7 х 6 х 4) сценариев. Чтобы уменьшить количество сценариев, Команда СЅ рассмотрела подмножество сценариев, которые являются наиболее распространенными или с наибольшей вероятностью приведут к нежелательным последствиям, как показано в таблице 4.10. В таблице флажок указывает, что следствие (в столбцах) считается возможным следствием причины (в строках), тогда как другие эффекты не считаются вероятными для данной причины. Они основаны на беседах с отраслевыми экспертами и анализе данных об инцидентах с аэрозолями. Например, упавшая упаковка вряд ли приведет к чему-то большему, чем протечка контейнера, поскольку сила не достаточно велика для создания снаряда или сильного выброса. Ячейки, заштрихованные похожим цветом, обозначают группы событий, которые считались эквивалентными. Например, независимо от того, раздавит ли внешний предмет или проколет аэрозольный баллон, каким бы ни был эффект, возникающий в результате риск и возникновение должны быть одинаковыми, то есть аэрозоли повреждаются только внутри упаковки и не представляют опасности для работников. Аналогичным образом, дорожно-транспортное происшествие, в результате которого произошел только выброс продукта, может быть сгруппировано с раздавливанием или прокалыванием контейнера внешним предметом, поскольку авария привела бы к аналогичному эффекту. Однако воспламенение со происходит в содержимое аэрозольного баллона в случае автомобильной аварии отличается от его воспламенения, как показано в случае раздавливания или прокалывания контейнера внешним предметом, поскольку возгорание в транспортном средстве может затронуть гораздо больше людей на проезжей части.

Таблице 4.10 Комбинации причин и следствий аэрозольного баллона и сокращения сценариев

	Последствия					
	Персонал или Оборудование	Утечка или выброс	Созданный снаряд	Высвобождение с применением взрывы, высвобождающие высокая скорость	насилия (мож	
Первопричина		Содержимое воспламеняется	созданный снаряд	фрагменты)		
Упаковка сброшена				0		
Смещается нагрузка	Открыт	0	0	0		
Раздавливание внешним	Открыт		0	0		
предметом Проколы внешним		0	0	0		
предметом Дефектного контейнера			0	0		
Дорожно-транспортное						

происшествие ИспандакСS, 2019, Данные об инцидентах PHMSA и Transport Canada.

Примечания: Флажок указывает, что эффект был определен как вероятный для данной причины, в то время как другие эффекты были определены как маловероятные (например, упавшая упаковка может привести к утечке, но сила, как ожидается, не будет достаточной для создания снаряда. Ячейки, заштрихованные аналогичным цветом, указывают на группы событий, которые были зарегистрированы

считается эквивалентной. Например, независимо от того, раздавит ли внешний предмет аэрозольный баллон или проколет его, каким бы ни был эффект, возникающий в результате риск и случайность должны быть одинаковыми.

Команда CS проверила эти сценарии на основе имеющихся данных об инцидентах, а также с помощью телефонных конференций, совещаний и дискуссий с представителями отрасли, включая грузоотправителей, перевозчиков и работников склада, которые знакомы с частотой, причинами и исходами инцидентов с аэрозольными баллонами как при транспортировке, так и при хранении. Согласно обсуждениям с различными представителями отрасли, наиболее распространенной причиной повреждения аэрозольных баллонов или утечки содержимого являются инциденты с обращением, которые обычно происходят на складах, в распределительных центрах или пунктах выдачи посылок. В некоторых случаях эти инциденты могут быть охарактеризованы как происходящие на транспорте, если они происходят во время погрузки и разгрузки, связанных с перемещением (см. Определения в § 171.8, касающиеся погрузки или разгрузки, связанных с перемещением). В Вероятность инцидента с использованием аэрозольного баллона с пропеллентом, который выталкивает жидкость, порошок или пасту, и баллона, который выталкивает строго газ, считаются равными. Сокращение количества сценариев привело к рассмотрению девяти комбинаций причин и следствий. Сценарии, рассмотренные в FMEA, обобщены в таблице 4.10. В результате было рассмотрено в общей сложности 63 (9 × 7) комбинации продуктов, а также причины и последствия выхода из строя контейнера.

Таблица 4.11 Объединенные первопричины и следствия, рассмотренные в режиме отказа, и анализ последствий¹

- Сценарий	Первопричина	Следствие		
А	Посылка удалена	Утечка или утечка содержимого: подвержен воздействию персонал или оборудование		
В	Смена нагрузки	Утечка или утечка содержимого: подвержен воздействию персонал или оборудование		
C	Раздавливание внешними предметами	Утечка или утечка содержимого: подвержен воздействию персонал или оборудование		
D	Раздавливание внешними предметами	Утечка или высвобождение содержимого: Утечка или высвобождение содержимого, подвергшегося воздействик		
		Источника воспламенения		
Е	Раздавливание внешним предметом	Ракеты / реактивного снаряда		
F	Дефектный контейнер	Утечка или вышел содержание: персонал, ни оборудование, наружная		
G	Дефектный контейнер	утечка или вышел содержание: утечка или вышел содержание подвергается		
		Источник Зажигания		
Н	Дорожно-транспортное происшествие√течка или высвобожденное содержимое: Утечка или высвобожденное содержимое, подвергшееся воздейс			
	(с огнем)	Источника воспламенения		
Я	Автомобильной аварии	Насильственный выброс		
	(с огнем)			

Источник: CS Team, 2019, Данные об инцидентах PHMSA и Transport Canada.

Для каждого сценария команда CS разработала сюжетную линию, в которой кратко описывается, как были рассмотрены и присвоены баллы для рейтинга происшествий и рейтинга смягчения последствий. Оценка серьезности затем зависит от рассматриваемого продукта, и эти оценки с

обоснованием приводятся для каждого 15

Нагрузка, связанная с перемещением означает погрузку персоналом перевозчика или в присутствии персонала перевозчика упакованных или контейнеризированных опасных материалов на транспортное средство, самолет или судно с целью их транспортировки, включая погрузку, блокировку и крепление упаковки опасных материалов в грузовой контейнер или транспортное средство и отделение упаковки опасных материалов в грузовом контейнере или транспортном средстве от несовместимого груза. (172.8).

Основано на анализе данных об инцидентах в США и Канаде за 30 лет и многочисленных беседах с отраслевыми экспертами, эти сценарии представляют собой наихудшие сценарии для анализа режимов отказа и последствий.

сценарий и продукт. Наконец, вычисляется и суммируется результирующий RPN для сравнения относительного риска каждого продукта и сценария.

4.9.1 Типичные условия транспортировки аэрозолей

Аэрозольные баллоны заполняются на более чем 100 производственных предприятиях в Соединенных Штатах; оттуда они транспортируются в распределительные центры и далее розничным торговцам и покупателям. Большинство аэрозолей перевозится автомобильным транспортом в прицепах-фургонах для сухих грузов. Сюда входят поставки в Мексику и Канаду. В США осуществляются некоторые железнодорожные перевозки аэрозолей, в основном на Западное побережье, поскольку большинство предприятий по производству аэрозолей расположены в регионах Восточного побережья, Среднего Запада и побережья Мексиканского залива. Некоторые отрасли промышленности перевозят аэрозоли грузовиками в порты, откуда аэрозоли отправляются в Азию, Карибский бассейн и Южную Америку. Аэрозоли также перевозятся грузовиками в аэропорты для отправки воздушным транспортом. Лругие страны также производят и транспортируют аэрозоди внутри каждого континента. Таким образом, межконтинентальные поставки аэрозолей являются исключением, а не правилом. В главе "Цепочка поставок" более подробно описывается транспортировка аэрозоля по видам. В этом разделе описываются наиболее распространенные способы транспортировки аэрозолей от производственных предприятий к потребителям в США. Большинство аэрозолей перевозятся в прочной наружной упаковке и поставляются в паллетах и термоусадочной упаковке, что обеспечивает высокий уровень безопасности и снижает вероятность повреждения при транспортировке, за исключением электронной коммерции и посылок, отправляемых потребителям непосредственно из распределительных центров. Поскольку эти упаковки в некоторых случаях отправляются по отдельности и подвергаются более частому обращению, существует более высокая вероятность того, что они упадут или раздавятся во время транспортировки. Однако при оценке степени аварийности был применен общий подход, рассматривающий оба сценария транспортировки в совокупности.

От производственного объекта до склада.

Процесс наполнения аэрозольных баллонов включает впрыскивание в баллоны продукта и пропеллента с помощью многоступенчатого конвейерного процесса. Этот высокоавтоматизированный процесс совершенствовался на протяжении последних 40 лет и претерпел множество модификаций для повышения эффективности и безопасности. Банки также тестируются в процессе сборки, подвергаясь воздействию горячей водяной бани в соответствии с нормативами. Готовый продукт или наполненные аэрозолем баллоны затем загружаются в коробки (или футляры), которые собираются на поддоны, и все это машинным способом. В одном промышленном примере 16-унционные банки сортируются в коробки по 6 или 12 упаковок и собираются на поддоны, которые затем загружаются в фургон для сухих грузов и перевозятся на небольшое расстояние на склад.

Склад для клиента

На складе паллеты либо предназначены для клиента (полные паллеты), либо разгружаются и / или смешиваются с другими аэрозольными продуктами для других клиентов. Из интервью с представителями отрасли следует, что более 80 процентов поставок аэрозолей перевозятся в литровых количествах. Это связано с тем, что многие клиенты используют аэрозоли в США. Поддоны сортируются в соответствии с потребностями клиентов и упаковываются для транспортировки. Определенные поддоны загружаются в прицепы-сухогрузы и остаются нетронутыми до прибытия клиенту. Поддоны могут перевозиться на нескольких других грузовых прицепах и / или интермодальных контейнерах и сниматься с них между пунктом отправления и пунктом назначения в зависимости от расстояния поездки. Остальные 20 процентов отправлений доставляются по сверхсветовым линиям в распределительные центры или непосредственно заказчикам. Крупные розничные торговцы отправят свои собственные полуприцепы-фургоны на склад производителя аэрозолей и доставят их в распределительные центры и магазины. На розничных продавцов крупных упаковок приходится примерно 40 процентов от общего объема поставок аэрозолей в США. В одном примере отрасли менее одного процента аэрозольных контейнеров перевозится почтовыми перевозчиками, такими как UPS, FedEx, Почтовая служба США и другими. В этих примерах упаковки в аэрозольных баллонах также загружаются партиями по литру на смешанные поддоны с использованием грузовых прицепов-фургонов. В центрах сортировки и распределения аэрозольных упаковок транспортируются по высокоскоростным конвейерным системам перед загрузкой в транспортные средства доставки, смешанные с другими

Основываясь на беседах с перевозчиками посылок, команда CS узнала, что посылки доставляются клиентам. 16

были случаи, когда упаковки с аэрозольными баллонами падали или сминались, высвобождая содержимое. В некоторых случаях наличие статического электричества приводило к воспламенению выделяемых легковоспламеняющихся компонентов, но ни одно из них не приводило к событию с серьезными последствиями. В ходе еще одного инцидента работник транспортной компании подвергся воздействию вещества, вызывающего легкую коррозию (средство для чистки духовок), и получил незначительную травму.

4.9.2 Обстоятельства

Чтобы оценить различные сценарии транспортировки, команда CS разработала "обстоятельства" с "сюжетными линиями", чтобы проиллюстрировать обстоятельства, при которых могут произойти указанные сбои. Полный "сценарий" включает в себя пример аэрозольного баллончика с его содержимым. Команда CS выявила в общей сложности девять обстоятельств (от A до I) с возрастающими уровнями тяжести, от "A: Упавший пакет" до "I: Возгорание транспортного средства". Процесс развития этих обстоятельств описан в таблице 4.10.В этом разделе подробно описывается каждое обстоятельство с показателями возникновения и смягчения последствий для каждого. Обратите внимание, что показатели возникновения и смягчения последствий не зависят от фактического содержимого.

Во время обычной транспортировки упаковка с аэрозольными баллонами, отправленная по специальному разрешению или в

Обстоятельство А. Падение упаковки, приводящее к утечке или высвобождению содержимого: персонал или оборудование подвергаются воздействию

ограниченном количестве в прочной наружной упаковке, выбрасывается. Несмотря на то, что доля отброшенных посылок может быть небольшой по сравнению с общим количеством отправленных (см. Текстовое поле), тем не менее, в целом они происходят очень часто. По этой причине отбросы, некоторые из которых может быть достаточно серьезным, чтобы нарушить защиту упаковки, предполагается, что это происходит часто, оценка вероятности составляет 9: то есть 10 упаковок, содержащих аэрозоль , каждый день подвергаются падению, наносящему какой-либо ущерб. Хотя это частое явление, оно составляет очень небольшой процент от 10 миллионов ежедневно перевозимых посылок. Обратите внимание, что обсуждение здесь не зависит от фактического содержимого, поэтому этот рейтинг возникновения и смягчения последствий будет применяться ко всем примерам продуктов в случае А. Исследования показывают, что потери посылок чаще всего происходят на складах или в распределительных центрах, когда более крупные партии разделяются и отправляются для окончательной доставки, или же на "последней миле" транспортировки (например, посылкой, автопарком или контрактным перевозчиком). Как уже отмечалось, посылки могут быть LTL, TL или отправляться почтовым перевозчиком (менее одного процента). При отправлениях LTL паллеты регулярно разгружаются и загружаются вилочными погрузчиками несколько раз между распределительными центрами. При отправлениях ТL паллеты разгружаются меньше раз. В примерах, связанных с перевозчиками посылок, упаковки могут загружаться и перегружаться до пяти раз и сортироваться различными способами, включая ручные или механические, на высокоскоростных лентах, салазках, лотках и роликах. Грузы на большие расстояния, скорее всего, будут подвергаться еще большему количеству погрузок, разгрузок и сортировок. Учитывая автоматизированный процесс обработки посылок и множество этапов транспортировки, посылки, доставляемые почтовыми перевозчиками, регулярно подвергаются воздействию сил, которые потенциально могут повредить посылки. Следовательно, падения являются основной причиной повреждения упаковок и продуктов, и они часто происходят при ручном обращении с упаковкой во время погрузки и разгрузки. Исследования показывают, что воздействие на грузы в основном представляют собой вращательные падения на кромки или углы, с относительно небольшим количеством плоских или идеальных падений на кромки / углы. Исследования показали, что большинство ударов возникают в результате ударов, не связанных со свободным падением, в основном эквивалентных падению с относительно небольшой высоты. Однако около пяти процентов всех отправлений получают по крайней мере один удар выше эквивалентной высоты падения 30 дюймов. В одном исследовании отправлений на следующий день максимальная высота падения составила 16

Оценки основаны на интервью с несколькими экспертами аэрозольной отрасли из HCPA и COSTHA.

В этом разделе "упаковки" относятся к "коробкам" или "футлярам", предназначенным для транспортировки аэрозолей.

почти 8,5 футов (2,6 метра), и пять процентов всех падений с высоты более трех дюймов из исследованных упаковок были выше 4,8 футов (1,45 метра), что превышает расстояние в 3.9 футов (1,2 метра), указанных в UNMR и HMR для тестирования высоты падения упаковки. В том же исследовании было обнаружено в среднем более двух капель на упаковку при однодневных поставках. В одном отраслевом примере в среднем в день повреждается пять случаев в склал.

Хотя многие наружные упаковки, содержащие аэрозольные баллончики, могут падать или подвергаться воздействию сил, аналогичных ежедневному падению, они должны соответствовать требованиям "прочной наружной упаковки", указанным в §173.24 и §173.24а. Эти требования предусматривают:

- (b) каждая упаковка, используемая для перевозки опасных материалов в соответствии с настоящим подразделом, должна быть спроектирована, изготовлена, обслуживаться, наполняться, ее содержимое должно быть ограничено и закрыто таким образом, чтобы в условиях, обычно присущих транспортировке -
- (1) Если в настоящем подразделе не предусмотрено иное, не было идентифицируемого (без использования приборов) выброса опасных материалов в окружающую среду.
- (2) Эффективность упаковки существенно не снизится; например, ударопрочность, прочность, совместимость упаковки и т.д. Должны поддерживаться при минимальных и максимальных температурах, изменениях влажности и давления, а также при ударах, нагрузках и вибрации, обычно возникающих при транспортировке. В исследовании. проведенном Саха, Сингхом и Singh, 90 процентов упавших упаковок были сброшены с высоты 2,5 фута (0,77 метра) или

меньше - расстояния, которое обычно выдерживают упаковки ограниченного количества. Следовательно, команда CS предположила, что "прочной внешней упаковки" достаточно для предотвращения повреждения внутреннего содержимого при 90 процентах всех падений. Это дает оценку по смягчению воздействия 7 (1 из 10 упаковок терпит неудачу при падении). Таким образом, падение считается достаточно сильным, чтобы вызвать повреждение упаковки в достаточной степени, чтобы один или несколько содержащихся в нем аэрозольных контейнеров выбрасывали свое содержимое внутрь поврежденной упаковки, пропитывая упаковку и подвергая воздействию содержимого находящийся поблизости персонал или оборудование с общей частотой 1 раз в день.

Обстоятельство В. Смещение нагрузки, приводящее к утечке или высвобождению содержимого: Персонал или Оборудование подвергаются воздействию

Во время обычной перевозки (см. также первое текстовое поле в случае А выше) большинство грузов в той или иной степени смещается из-за различных перемещений, происходящих внутри прицепа, железнодорожного вагона или интермодального контейнера. 20 В одном исследование, проведенное в Соединенном Королевстве, показало, что смещение нагрузки, приводящее к падению груза, происходило следующим образом

https://www.iopp.org/files/public/IoPPSmallParcelShippingGuidelines.pdf

К. Саха, Дж. Сингх и С. П. Сингх, "Измерение, анализ и сравнение падений, испытываемых упаковками при отправках между Штатами и внутри страны на следующий день в Соединенных Штатах", Журнал прикладных исследований упаковки , Том 4, № 2, апрель 2010 г., https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1052&context=it_fac .

Институт специалистов по упаковке, Руководство по упаковке для небольших посылок, март 2002 г.

С. П. Сингх, Дж. Антл, Дж. Сингх и Э. Топпер, "Методы крепления груза и упаковки для снижения риска повреждения и травматизма персонала при перевозке грузов автомобильными, контейнерными и интермодальными перевозками"., "Журнал прикладных исследований упаковки, 6.1 (2014), https://scholarworks.rit.edu/cgi/viewcontent.cgi?article=100&&context=japr

не реже одного раза в час.21

Учитывая это, считается, что смещение груза, содержащего аэрозольные баллоны,

происходит с той же частотой, что и падение, что дает оценку вероятности смещения груза 9

(10 в день). Как и в случае с падениями, вероятность

того, что какой-либо конкретный сдвиг вызовет поломку, будет варьироваться в зависимости от тяжести

сдвига и способности упаковки выдерживать приложенные усилия. В отсутствие конкретных данных по этому,

предполагается, что степень смягчения при переносе нагрузки такая же, как и при падении, 7 (1 из 10

упаковок выходит из строя при смене нагрузки). Таким образом, перемещение груза считается достаточно

серьезным, чтобы вызвать повреждение упаковки в достаточной степени, чтобы содержимое одного или

нескольких аэрозольных баллонов попадало внутрь поврежденной упаковки, пропитывая упаковку и подвергая воздействию

содержимого находящийся поблизости персонал или оборудование с общей частотой 1 раз в день.

Обратите внимание, что приведенное здесь обсуждение не зависит от фактического содержания, поэтому этот

рейтинг возникновения и смягчения последствий будет применяться ко всем примерам продуктов в случае В.

Обстоятельство С. Раздавливание внешним предметом, приводящее к утечке или высвобождению содержимого: Персонал или оборудование подвергаются воздействию

Во время обычной транспортировки внешняя упаковка, содержащая аэрозольные баллончики, также может быть сжата или раздавлена другой упаковкой в штабеле или внешним предметом, таким как вилочный погрузчик. Сжатие и дробление часто являются результатом непрочной или плохо пригнанной упаковки, переполненной упаковки и упаковок, которые уложены слишком высоко, или результатом падения упаковки или аэрозольного баллона на землю и их переезда вилочным погрузчиком. В некоторых случаях при обычной транспортировке аэрозоли могут быть упакованы в демонстрационные упаковки, предназначенные для розничной продажи (49 CFR § 173.156), которые состоят из аэрозольных контейнеров, упакованных в лотки, которые предохраняют отдельные контейнеры от смещения внутри готовой комбинированной упаковки во время транспортировки. Лотки помещаются в коробку из древесноволокнистой плиты, а коробка из древесноволокнистой плиты обвязывается и крепится к поддону металлическими, тканевыми или пластиковыми ремнями, образуя единый блок на поддоне. Эти упаковки для демонстрации не обеспечивают такую же защиту верхней части аэрозольного баллона, как коробка из древесноволокнистой плиты, и баллоны могут быть более подвержены раздавливанию. Интервью с персоналом отрасли показывают, что повреждения, вызванные погрузчиками, на самом деле являются основной причиной неполадок во время транспортировки. Хотя считается, что события, связанные с раздавливанием внешним объектом, происходят с меньшей частотой, чем падения или смещения нагрузки, мы присваиваем им рейтинг вероятности 8 (один раз в день) - представляется вероятным, что любого такого события было бы достаточно для нарушения защиты упаковки, что привело бы к норме смягчения, равной 10 (никогда не снижалась). Что касается падений и смен, то это приводит к общей частоте одного такого сбоя в день

Обстоятельства от А до С Консолидированные

Предыдущий анализ видов отказов, приводящих к облучению персонала или оборудования в результате падений, перемещения груза или раздавливания упаковки (или контейнера), дал аналогичные результаты для каждого обстоятельства (общая предполагаемая частота полных отказов), согласно оценкам, происходит один отказ в день. Другими словами, независимо от того, была ли упаковка уронена, сдвинута или раздавлена, содержимое поврежденных аэрозолей внутри упаковки остается неизменным.

Н. К. М. Дэй, Г. П. Уайт и А. МакДжилливрей, "Безопасность погрузки на грузовиках с бортовыми занавесками", Отчет руководства по охране труда и технике безопасности, September 2008, https://www.hse.gov.uk/research/rrpdf/rr662.pdf.

содержатся в "прочной внешней упаковке" (или снижаются с помощью нее). Следовательно, причины привели к тем же последствиям. По этой причине в последующем анализе обстоятельства A, B и С были объединены в одно обстоятельство, поскольку "падение, смещение или раздавливание" приводит к "воздействию персонала или оборудования", которое смягчается прочной внешней упаковкой. С этой точки зрения, падение, сдвиг или давка приведут к "утечке" (воздействию персонала или оборудования) от одного до трех раз в день (до трех, учитывая три возможные первопричины).

Обстоятельство D. Раздавливание внешним предметом, приводящее к утечке или высвобождению содержимого: Утечка или высвобождение содержимого, подвергшегося воздействию источника воспламенения

Как обсуждалось в случае С, предполагается, что коэффициент встречаемости для измельченной упаковки равен 8 (каждый день измельчается одна упаковка, содержащая аэрозоль). Однако в данных обстоятельствах представляется очевидным, что не все раздавленные упаковки могут образовываться вблизи источника воспламенения. Большое количество раздавленных упаковок образуется при транспортировке, внутри прицепа грузовика, железнодорожного вагона, транспортного контейнера или самолета, где нет источников воспламенения. Судя по обсуждениям в отрасли, одним из источников возгорания, который становится все более распространенным, являются повышенные статические заряды от высокоскоростных автоматических конвейерных лент, изготовленных из композитных материалов вместо нержавеющей стали и используемых на сортировочных установках или складах. Другим относительно распространенным источником воспламенения, который был предоставлен заинтересованными сторонами отрасли, было тепло от трения, выделяемое тормозами грузовых автомобилей. Однако такие условия относительно редки. В результате мы предполагаем, что вероятность возгорания должна быть примерно в 1000 раз ниже, чем простое воздействие на персонал или оборудование (обстоятельства А, В, С), следовательно, степень защиты измельченных упаковок при наличии источника воспламенения составляет 3 (1 на 1000 случаев измельчения воспламенения одного дозавется воздействию источника воспламенения один раз в 1000 дней. Если предположить здесь, что, как указано выше, перепады или сдвиги также будут вносить свой вклад, то общая частота составит от одного до трех на 1000 дней (2,7 года).

Обстоятельство Е. Раздавливание внешним объектом, приводящее к попаданию ракеты / реактивного снаряда

Как обсуждалось в обстоятельстве C, предполагается, что коэффициент встречаемости раздавленной упаковки равен 8. Однако, упаковку необходимо будет раздавить не только в присутствии источника воспламенения, но и нагреть до достаточно высокой температуры, чтобы контейнер разорвался и образовалась ракета / реактивный снаряд. Согласно исследованиям французских рабочих, когда поддоны с аэрозольными баллонами подвергаются сильному возгоранию, разрыв почти неизбежен. Однако образование ракеты или снаряда происходит значительно реже. По этой причине, для считается, что обстоятельства, при которых внешний предмет раздавливает упаковку, содержащую аэрозольные баллончики, с меньшей вероятностью (скажем, в 10 раз) приведут к попаданию ракеты / реактивного снаряда, чем простое участие в пожаре. Это приводит к рейтингу смягчения последствий, равному 2 (1 случай из 10 000 раздавливаний приводит к "попаданию ракеты / реактивного снаряда", а общая частота раздавливания снаряда составляет 1 случай за 10 000 дней (27 лет).) Учитывая отсутствие сообщений об этом в истории инцидентов, это, по-видимому, согласуется с данными.

Коркек, М. А., Исследование об актуальности системы изъятий при перевозке опасных грузов, упакованных в ограниченных количествах, февраль 2002 г.

Обстоятельство F. Дефектный контейнер, приводящий к утечке или утечке содержимого: подвержен воздействию персонала или оборудования

Согласно одному исследованию, частота возникновения дефектных аэрозольных контейнеров при производстве составляет приблизительно 0,05 Пробедыта представителями отрасли подтвердили это, указав, что таких случаев немного. дефектные контейнеры. Если принять показатель в 0,05 процента, то при ежегодном производстве в США около четырех миллиардов аэрозольных баллонов в принципе каждый день может производиться 5550 дефектных аэрозольных баллонов. Однако, основываясь на анализе данных и беседах с представителями отрасли, большинство из этих бракованных контейнеров отбраковываются в процессе производства, и очень редко бракованный контейнер попадает в транспортную систему. Исходя из этого, частота возникновения дефектного аэрозольного баллона при транспортировке составляет 2 (1 на 1000 дней).

Аэрозольные баллончики проходят тщательную проверку перед тем, как покинуть производственное предприятие. Правила НМЯ предписывают, чтобы каждый баллон подвергался испытанию в горячей водяной бане на предмет утечки и деформации. Не должно быть "никаких признаков утечки или необратимой деформации". Существуют альтернативы испытанию на горячей водяной бане для термочувствительных продуктов, требующие, чтобы два контейнера из каждой партии в 2000 штук подвергались испытаниям на герметичность и давлению. Если один из проверяемых контейнеров выходит из строя, вся партия из 2000 контейнеров должна быть выброшена. Остальные контейнеры должны быть осмотрены визуально. Требуются дополнительные испытания на вес и герметичность, а контейнеры необходимо периодически проверять произвольно. Если обнаруживается, что случайно проверенный контейнер неисправен, все контейнеры, произведенные с момента последней выборочной проверки, должны быть утилизированы. Однако, как только дефектный контейнер попадает в транспортную систему, принимается мало мер по смягчению последствий. Исходя из этого, а степень защиты 9 (каждый второй смягчен) присваивается дефектному контейнеру при транспортировке, приводящей к "утечке" (воздействию персонала или оборудования). В целом, по нашим оценкам, частота утечки из-за дефектного контейнера при транспортировке составляет один случай на 2000 дней (5,5 лет).

Обстоятельство G. Дефектный контейнер, приводящий к утечке или высвобождению содержимого: Утечка или высвобожденное содержимое, подвергшееся воздействию источника воспламенения

Как описано в обстоятельстве F, вероятность возникновения дефектного аэрозольного баллона при транспортировке составляет 2 (1 на 1000 дней). Следуя логике обстоятельства E, воздействие источника воспламенения ожидается только в одном из 1000 случаев простой "утечки". Однако это приводит к чрезвычайно низкому общему числу случаев (1 на 1 000 000 дней, или приблизительно 2700 лет). Хотя может быть правильным, что неисправный контейнер практически никогда не приводит к утечке + источнику воспламенения, мы более консервативно устанавливаем коэффициент смягчения последствий здесь до 6,5 или 1 к 20 не снижен, чтобы достичь общей частоты одного случая утечки каждые 20 000 дней (примерно 55 лет).

М. А. Фарук, Р. Кирчейн, Х. Новоа и А. Араужо, "Затраты на качество: оценка компромиссов между затратами и качеством для инспекционных стратегий производственных процессов", Международный журнал экономики производства, 188, 2017,

https://www.researchgate.net/profile/Muhammad_Farooq132/publication/315982597_Cost_of_Quality_Evaluating_Co st-Quality_Tradeoffs_for_Inspection_Strategies_of_Manufacturing_Processes/ccb59d541dcaca2725954c450ff/Cost-of-Quality-Evaluating-Cost-Quality-Tradeoffs-for-Inspection-Strategies-of-Производственные процессы.pdf.

^{24 49} CFR § 173.306, https://www.ecfr.gov/cgi-bin/text idx?SID=e38e040fabcd5db02dab613e0499a0d2&mc= true&node=se49.2.173_1306&rgn=div8

Обстоятельство Н. Дорожно-транспортное происшествие (с пожаром), приводящее к утечке или выбросу содержимого: Утечка или выброс содержимого, подвергшегося воздействию источника воспламенения

Дорожно-транспортные происшествия являются распространенными событиями при перевозке грузов в США По данным

Федерального управления безопасности автомобильных перевозчиков (FMCSA), в 2017 году произошло более 390 000 аварий с участием больших грузовиков или автобусов, приведших только к материальному ущербу, 116 000 аварий, приведших по крайней Таким образом, зарегистрировано более 1000 аварий с участием крупных мере к одной травме, и почти 4500 аварий, приведших по крайней мере к одному смертельному исходу. 25,26 грузовики или автобусы ездят по США каждый день. Другими словами, частота аварий для больших грузовиков и автобусов составляет примерно 12 на 100 миллионов пройденных транспортных миль (VMT) при авариях только с материальным ущербом, четыре на 100 миллионов VMT при авариях, в которых по крайней мере один человек получил травму, и 0,14 на 100 миллионов VMT при авариях, в которых по крайней мере один человек погиб. Основываясь на беседах с заинтересованными сторонами отрасли, аэрозоли в основном перевозятся автомобильным транспортом, и это наблюдение дополнительно подтверждается данными о транспортировке всех газов, классифицированных как опасные материалы, которые показывают, что более 60 процентов всех газов по весу перевозятся автомобильным транспортом. Для оценки процентное содержание аэрозолей во всех опасных средах, команда CS использовала данные уровня II Агентства по охране окружающей среды для репрезентативного штата. Отрасли, хранящие определенные отчетные количества опасных материалов в США, обязаны каждый год подавать отчеты уровня ІІ в ЕРА. В этих отчетах задокументировано общее количество килограммов опасных материалов, хранящихся на объектах в течение предыдущего года. Используя этот подход, команда СЅ определила, что аэрозоли составляют менее 0.1 процента всех опасных материалов по весу. Бюро переписи населения США проводит обследование товарных потоков каждые пять лет, чтобы помочь директивным органам и специалистам по планированию перевозок оценить спрос на транспортные средства и услуги, энергопотребление и безопасность, риски и экологические проблемы при перевозке товаров по США. Последние результаты относятся к Исследованию товарных потоков за 2012 год (CFS). Результаты включают в себя отгрузку опасных и неопасных материалов в США в разбивке по классам опасности и способам транспортировки. Согласно CFS 2012 года, опасные материалы составляют примерно восемь процентов от общего количества тонно-миль грузов, перевозимых автомобильным транспортом в США. Если предположить, что 0,1 процента всех опасных материалов составляют аэрозоли, то примерно 0,008 процента всех тонно-миль грузов, перевозимых в США, составляют аэрозоли. Если применить эту долю к общему пробегу больших грузовиков и автобусов на основе данных FMCSA, то пробег аэрозолей составляет примерно 250 миллионов миль. Применяя эти расчетные показатели аварийности к расчетному значению VMT для грузовиков, перевозящих аэрозоли, получается, что каждые 10 дней происходит примерно одна авария, включая перевозку груза с аэрозольным распылителем, приводящая только к материальному ущербу, одна авария каждые 50 дней, приводящая по меньшей мере к одной травме, и одна авария каждые 1000 дней, приводящая по меньшей мере к одному смертельному исходу для грузовиков, перевозящих аэрозоли. Поскольку несчастный случай, приводящий к пожару, скорее всего, является более серьезным несчастным случаем, предполагается, что несчастный случай будет достаточно серьезным, чтобы привести по крайней мере к одной травме. Не все аварии приводят к пожару; грузовики спроектированы с элементами безопасности, позволяющими снизить риски для водителя и других лиц в случае аварии. Согласно одному исследованию, около 2000 аварий произошли во время перевозки опасных материалов автомобильным и железнодорожным транспортом с начала 20-х годов.

че столетие до июля 2004 года, самый

2

Большой грузовик определяется как грузовик с номинальной полной массой транспортного средства (GVWR) более 10 000 фунтов.

Федеральная ассоциация безопасности автомобильных перевозчиков, Факты о крушении крупного грузовика и автобуса в 2017 году, май 2019 г., https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/safety/data-and-statistics/461861/ltcbf-2017-final-5-6-2019.pdf.

Бюро переписи населения США, Обзор товарных потоков: Соединенные Штаты: 2012 год, Опасные материалы, февраль 2015 года, https://www.census.gov/library/publications/2015/econ/ec12tcf-us-hm.html . Требования

EPA США, EPRCRA к отчетности для уровня II -https://www.epa.gov/epcra/формы и инструкции уровня ii.

частым результатом аварии был простой выброс содержимого. Было установлено, что пожары возникают в результате несчастных случаев примерно в 30 процентах случаев.²⁹

Учитывая вышесказанное, по нашей оценке, частота несчастных случаев с участием аэрозольных грузов и пожаров находится на промежуточном уровне между количеством травм (1 на 50 дней) и смертельных исходов (1 на 1000 дней). Это приводит к коэффициент вероятности дорожно-транспортных происшествий с грузовиком, включая перевозку аэрозоля, равен 3 (1 за 500 дней). Поскольку данные об инцидентах показывают относительно небольшое количество инцидентов с фактическими возгораниями транспортных средств, включая аэрозольный груз, и поскольку логично предположить, что некоторые возгорания будут незначительными и / или потушены до того, как они достигнут груза, присвоен рейтинг смягчения последствий 8 (каждый пятый пожар затрагивает аэрозольный груз). Это приводит к тому, что общая частота пожаров с участием аэрозольного груза составляет 1 на 2500 дней (7 лет).

Обстоятельство І. Дорожно-транспортное происшествие (с пожаром), приводящее к насильственному освобождению

Как описано в обстоятельстве Н, рейтинг происшествий с грузовиком равен 3 (1 за 500 дней).

Французское исследование, проведенное Национальным институтом Ineris во Франции, который выступает в качестве национального эксперта по перевозке широкого спектра опасных грузов.

Исследование было представлено в Транспортную комиссию ООН по Подкомитет по опасным грузам, представленный экспертом из Франции в ходе обсуждения вопроса о согласовании положений об ограниченном кижинедование включало тестирование аэрозольных баллонов, задействованных в серьезных условиях возгорания показано, что это обычно приводит к разрыву аэрозольных баллонов, и поэтому при сильном пожаре, когда аэрозольные баллоны подвергаются воздействию тепла и огня, весьма вероятен сильный выброс. Следовательно, уменьшение клиентов здесь должен быть идентичным тому, что в обстоятельствах ч.: рейтинг смягчения 8 (один пять пожаров достичь аэрозоля грузов) присваивается. Это приводит к общей частоте пожаров с участием аэрозольных грузов с сильным выбросом 1 раз в 2500 дней (7 лет).

Сведены воедино обстоятельства Н и І.

Приведенный выше анализ показывает, что обстоятельства H и I на самом деле представляют собой единое обстоятельство, и поэтому их следует объединить.

²⁹ А. Оггеро, Р. М. Дарбра, М. Муньос, Э. Планас и Дж. Казаль, "Обзор аварий, происходящих при перевозке опасных веществ автомобильным и железнодорожным транспортом", *Журнал опасных материалов*, Том 133, выпуски 1-3, май 2006 г., https://www.academia.edu/9615403/A_survey_of_accidents_occurring_during_the_transport_of_hazardous_substances_by_road_and_rail.

посмотреть https://www.ineris.fr/en/research-support-public-policy/acciental-risks/transportation-dangerous-goods-and-30 трубопроводы

om. ST/SG/AC.10/C.3/2002/47

Перечисленные здесь обстоятельства можно резюмировать следующим образом:

Таблица 4.12 Краткое описание аэрозольных условий

Сценарий	Возникновение	Смягчение последстви	й Основная причина	Эффект	Общая частота	Комментарий
A, B, C	9, 9, 8	7, 7, 10	Падение, смещение, раздавл	пиванувечка или утечка содержимого: персонал или Оборудование, подвергшееся	1-3 "утечек" на каждого день.	A, B, C Уронить, переместить, раздавить рассматриваемая та же вероятность и эффект
D	8 (раздавлена 1 аэрозолі упаковка) каждый день)	ьная(1 на 1000 раздавливаний) → источник утечки + воспламенен источник)		предвоздействию утечки или высвобождения содержимого: Пр высвобожденное содержимое , подвергшееся возгоранию Источник	8 + 3; 1-3 каждые осочивщее ся дли (2,7 года)	Падение, сдвиг, раздавливание рассматривается с той же вероятностью, что и A, B, C. Но возгорание происходит 1000 раз менее вероятно
Е	8 (1 аэрозольная упаковка, измельченная каждый день)	2 (1 из 10 000 ударов → Ракета)	Внешний объект Сокрушает	Ракета / реактивный снаряд	8 + 2; 1 раз в 10 000 дней (27 лет)	Считается очень маловероятным результат. в 10 раз менее вероятный, чем падение, сдвиг, раздавливание при воспламенении
F	2 (1 дефектная банка при транспортировке на 1000 дней)	9 (1 из 2 дефектных) в транспорте) → "утечка"	Дефектный контейнер	Утечка или утечка содержимого: персонал или Открытое для утечки	2 + 9; 1 раз в 2000 дней	1 раз в 5,5 лет
G	2 (1 бракованная банка при транспортировке на 1000 штук дней)	"6,5" = 1 из 20 сбегает	Бракованный контейнер	или высвобождения содержимого оборудование: Просочившееся ил высвобожденное содержимое , подверженное возгоранию Источник	вероятность утечки в то раз	3 1 за 55 лет
H, I	3 (1 дорожно-транспортное пр с аэрозольным грузом каждые 500 дней)	оои % ціє явья по жаров достигает аэрозольного груза)	Дорожно-транспортное про (с огнем)	оисц устние или выброс содержимого: Утечка или выброс содержимого , подвержен возгоранию Источник	ного (7 лет)	1 за 7 лет (на основе французской работы, консолидированный от с I; любой пожар, который достигнет аэрозольного груза, приведет к привести к сильному выбросу)

4.9.3 Рейтинги серьезности в зависимости от сценария (Обстоятельства + продукт)

Оценки степени опасности по продуктам для каждого сценария приведены ниже, где продукты перечислены в формате "Характеристика пропеллента / характеристика содержимого (пример)":

Легковоспламеняющийся (например, средство для удаления вандальных следов):

- Обстоятельства от А до С: Падение / Смещение / раздавливание упаковки, приводящее к утечке или высвобождению содержимого: Воздействие на персонал или оборудование -Некоторое количество содержимого из аэрозольных баллонов пропитывает наружную упаковку, подвергая воздействию содержимого персонал или оборудование. Часть (газового) топлива выходит в окружающую атмосферу. Часть горючей жидкости, порошка или пасты также может испариться. Следовательно, любой персонал или оборудование, находящиеся поблизости, подвергаются воздействию содержимого аэрозольного распылителя, которое в данном случае представляет собой горючее топливо и легковоспламеняющееся содержимое со средней теплотой сгорания приблизительно 15 МДж для баллона весом 454 грамма. Из-за высокой теплоты сгорания создается опасность, но поскольку никаких последствий, кроме потери вещества, нет, оценка серьезности равна 2 (опасность создана, но последствий нет).
- Обстоятельство D: Раздавливание внешним предметом, приводящее к утечке или выбросу содержимого: Утечка или выброшенное содержимое, подвергшееся воздействию источника воспламенения В этом сценарии, поскольку теплота сгорания содержимого аэрозольного баллона составляет приблизительно 15 МДж, при выбросе с присутствием источника воспламенения произойдет возгорание. А оценка серьезности 7 (любой инцидент, при котором возможен взрыв аэрозоля, ракет или осколков, или когда возникает пожар, приводящий к травмам, материальному ущербу или перекрытию шоссе).
- Обстоятельство Е: Раздавливание внешнего объекта, приводящее к попаданию ракеты / реактивного снаряда В этом сценарии предполагается, что внешний объект раздавливает аэрозольный баллон, более того, для достижения ракетно-реактивного результата должно было произойти явление, называемое взрывом кипящей жидкости с расширяющимся паром (BLEVE).³²
- . Возможно, оценка серьезности здесь может в данном случае варьироваться как минимум от 7 (изображения, вызывающие возгорание, материальный ущерб или перекрытие шоссе) до 9 (смертельный исход). З Для наихудшего случая, присваивается оценка серьезности, равная 9. Обстоятельство F: Неисправный контейнер, приводящий к утечке или выбросу содержимого: Персонал или оборудование
- подвергаются воздействию Как и в обстоятельствах от A до C, выброс содержимого с приблизительной теплотой сгорания 15 МДж создает некоторую опасность, но при простом разливе последствий нет, поэтому оценка серьезности равна 2 (опасность создана, но последствий нет).
 - Обстоятельство G: Неисправный контейнер, приводящий к утечке или выбросу содержимого: Утечка или выброс
- содержимого, подвергшегося воздействию источника воспламенения Как и в случае D, выброс содержимого с приблизительной теплотой сгорания 15 МДж вблизи источника воспламенения может привести к возгоранию. Следовательно, что касается обстоятельства E, то ему присваивается оценка тяжести 9 (наихудший случай, летальный исход).

При ПРОДУВКЕ внутреннее давление увеличивается одновременно с уменьшением физического сопротивления контейнера, пока не будет достигнуто давление разрыва. Это приводит к внезапному испарению топлива и, в конечном итоге, жидкости, порошка или пасты. Образуется огненный шар и производится реактивный снаряд, способствующий распространению огня С. Декурьер и Э. Бернушон, Национальный институт окружающей среды, промышленности и рисков, Modélisation d'un Incendie Affectant un Stockage de Générateurs d'Aérosols, Сентябрь 2002 г. https://www.cfa-aerosol.com/wp-контент / загрузки/2018/05/ гаррогt_ineris.pdf. Л. Грин и М.

Берк, "Популярный французский лайфстайл-блогер Ребекка Бергер погибла в результате несчастного случая, взорвавшись в банке из-под взбитых сливок". New York Daily News, 22 июня 2017 г., https://www.nydailynews.com/news/world/french-блоггер-ребекка-бургер-убита-взрывающейся-канистрой-статья-1.3267961?barcprox=true.

Обстоятельства Н - 1: Дорожно-транспортное происшествие (с пожаром), приводящее к утечке или выбросу содержимого: Утечка или выброс содержимого, подвергшегося воздействию источника воспламенения - Как и в случае D, выбросу содержимого с приблизительной теплотой сгорания 15 МДж вблизи источника воспламенения присваивается оценка тяжести 9 (в худшем случае - летальный исход).

Негорючий /воспламеняющийся (например, Очиститель тормозных деталей):

Здесь единственным практическим различием между этим конкретным примером и предыдущим примером является общая теплота сгорания (11 МДЖ для контейнера весом 14 унций по сравнению с 15 МДЖ для контейнера весом 16 унций на 454-граммовый контейнер). Следовательно, оценки степени опасности здесь будут соответствовать приведенным в предыдущем примере. Другими словами, даже если топливо негорючее, при использовании легковоспламеняющегося содержимого последствия могут быть такими же серьезными.

Негорючий / воспламеняющийся (например, аэрозольный инсектицид):

- Обстоятельства от А до С: Падение / смещение / смятие упаковки, приводящее к утечке или высвобождению содержимого: Как указано выше.
- Обстоятельство D: Раздавливание внешним предметом, приводящее к утечке или высвобождению Содержимого: Утечка или
 Высвобожденное содержимое, подвергшееся воздействию источника воспламенения В этом сценарии, поскольку
 содержимое аэрозольного баллона имеет меньшую теплоту сгорания по сравнению с другими вышеуказанными продуктами,
 составляющую примерно 8 МДж, можно предположить, что любой пожар будет менее серьезным. В знак признания этого
 оценка тяжести может быть снижена на единицу по сравнению с предыдущими примерами, что приведет к получению оценки
 тяжести равной 6 (множественные тяжелые травмы). Обстоятельство Е: Столкновение с внешним объектом, приводящее к
- тяжести равной 6 (множественные тяжелые травмы). Обстоятельство Е: Столкновение с внешним объектом, приводящее к попаданию ракеты / реактивного снаряда Следуя логике предыдущего обстоятельства, оценка серьезности может быть снижена на единицу по сравнению с этим обстоятельством в предыдущих примерах, что дает оценку серьезности 8
- (серьезное воздействие на инфраструктуру; множественные тяжелые травмы и т.д.). Обстоятельство F: Дефектный контейнер, приводящий к утечке или выбросу содержимого: Как указано выше. Обстоятельство G: Неисправный контейнер, приводящий к утечке или утечке содержимого: Утечка или утечка содержимого, подвергшегося воздействию источника воспламенения
 - Как при обстоятельствах D и E, степень тяжести может быть снижена на единицу по сравнению с этим обстоятельством в предыдущих примерах, что дает оценку тяжести 8 (серьезное воздействие на инфраструктуру; множественные тяжелые
- травмы и т.д.). Обстоятельства Н- I: Дорожно-транспортное происшествие (с пожаром), приводящее к утечке или утечке содержимого: Утечка или утечка содержимого, подвергшегося воздействию источника воспламенения Как при обстоятельствах D и E, степень тяжести может быть снижена на единицу по сравнению с этим обстоятельством в предыдущих примерах, с оценкой серьезности 8 (серьезное воздействие на инфраструктуру; множественные тяжелые травмы и т.д.).

Негорючий /Негорючий материал (например, Автоматическая обработка кондиционером):

- Обстоятельства от А до С: Падение упаковки, приводящее к утечке содержимого: Воздействие на персонал или оборудование -Такой продукт, как автоматическая обработка кондиционером, имеет очень низкую теплоту сгорания, эквивалентную примерно 1,5 МДж на контейнер весом 3 унции. При использовании негорючего топлива и жидкости, порошка или пасты отсутствует риск возгорания. Таким образом, только разлив не будет иметь последствий, и уровень серьезности равен 1 (незначительный). Обстоятельство D: Раздавливание
- внешним предметом, приводящее к утечке или высвобождению содержимого: Утечка или Высвобожденное содержимое подвергается воздействию источника воспламенения - В данном случае, потому что содержимое аэрозоля

баллоны негорючие, воздействие источника воспламенения не меняет последствий по сравнению с простым разливом. Поэтому, **уровень серьезности равен 1** (незначительный). Обстоятельство

- Е: Раздавливание внешнего объекта, приводящее к попаданию ракеты / реактивного снаряда Предполагалось, что механизм для достижения Ракетно-реактивного результата включает пожар. Хотя в этом случае содержимое не привело бы к возгоранию, взрыв все же возможен. Следовательно,, оценка степени тяжести 4 (множественные незначительные травмы) назначается. Обстоятельство F: Неисправный
- контейнер, приводящий к утечке или высвобождению содержимого: персонал или оборудование подвергаются воздействию. Как и в случае с обстоятельством А, выброс содержимого с приблизительной теплотой сгорания 1,5 МДж не приводит к каким-либо последствиям, поэтому оценка степени тяжести равна 1 (незначительная).

Обстоятельство G: Неисправный контейнер, приводящий к утечке или утечке содержимого: Утечка или утечка

- Содержимого, подвергшегося воздействию источника воспламенения. Как и в случае с обстоятельством D, выброс содержимого с приблизительной теплотой сгорания 1,5 МДж вблизи источника воспламенения не приводит к худшим последствиям, чем простой разлив, поэтому степень тяжести 1 (незначительная). Обстоятельства от H до I:

 Дорожно-транспортное происшествие (с пожаром), приведшее к утечке или выбросу содержимого: Утечка или выброшенное
- содержимое подверглось воздействию источника воспламенения. Как и в случае с обстоятельством Е, выброс содержимого с приблизительной теплотой сгорания 1,5 МДж вблизи источника воспламенения не способствует возникновению пожара. Однако взрыв остается возможным, поэтому степень тяжести 4 (множественные незначительные травмы).

-Леп**ьувановоенюющийка**) (только газ

В этом случае единственным содержимым является легковоспламеняющийся газ, средняя теплота сгорания которого составляет приблизительно 13 МДЖ для контейнера объемом 10 унций. Теплота сгорания аналогична теплоте сгорания легковоспламеняющегося баллона / легковоспламеняющегося аэрозоля . Следовательно, условия здесь оцениваются идентично.

-Лен**кив Сен Ла2 се Ано прикте ()** олько газ

Этот пример продукта имеет очень низкую теплоту сгорания, эквивалентную примерно 2,7 МДж на 12-унционный контейнер. Это очень низкая теплота сгорания, но поскольку газ легко воспламеняется, следует предположить, что он вносит определенный вклад в возникновение пожара. Здесь мы будем рассматривать его как аналогичный приведенному выше Негорючему / легковоспламеняющемуся аэрозолю-инсектициду, но с еще одним снижением степени воздействия при пожаре.

- Обстоятельства от А до С: Падение / Смещение / Раздавливание упаковки, приводящее к утечке или высвобождению содержимого: Персонал или оборудование подвергаются воздействию. Такой продукт, как compressed gas duster, имеет очень низкую теплоту сгорания, эквивалентную примерно 2,7 МДж на контейнер весом 12 унций. Однако газ является легковоспламеняющимся, и создается опасность, но поскольку никаких последствий, кроме потери вещества, нет, степень тяжести равна 2 (опасность создана, но последствий нет). Обстоятельство D: Раздавливание
- внешним предметом, приводящее к утечке или высвобождению содержимого: Утечка или высвобожденное содержимое подвергается воздействию источника воспламенения. В этом сценарии, поскольку содержимое аэрозольного баллона имеет более низкую теплоту сгорания по сравнению с другими вышеуказанными продуктами, составляющую приблизительно 2,7 МДж, степень опасности снижается на 1 по сравнению с таковой для случая D в примере аэрозольного инсектицида, что дает оценка тяжести 5 (одна тяжелая травма). Обстоятельство
- Е: Столкновение с внешним объектом Приводит к попаданию ракеты / реактивного снаряда. Следуя логике предыдущего обстоятельства, рейтинг серьезности может быть уменьшен на единицу по сравнению с обстоятельством Е в

- Пример аэрозольного инсектицида, дающий **оценку серьезности, равную 7** (пожар с травмами, материальный ущерб, перекрытие шоссе и т.д.).
- Обстоятельство F: Неисправный контейнер, приводящий к утечке содержимого: персонал или оборудование подвергаются воздействию. Как и в сценарии A, утечка содержимого с приблизительной теплотой сгорания 2,7 МДж создает некоторую опасность, но при простой утечке последствий нет, поэтому оценка серьезности равна 2 (опасность создана, но последствий нет).
- Обстоятельство G: Неисправный контейнер, приводящий к утечке или утечке содержимого: Утечка или утечка содержимого, подвергшегося воздействию источника воспламенения. Следуя логике обстоятельств D и E, степень серьезности может быть уменьшена на единицу по сравнению с обстоятельством G в примере аэрозольного инсектицида, что дает степень серьезности 7 (пожар с травмами, материальный ущерб, перекрытие шоссе...).
- Обстоятельства от Н до І: Дорожно-транспортное происшествие (с пожаром), приводящее к утечке или выбросу содержимого: Утечка или
- Выброшенное содержимое подверглось воздействию источника воспламенения. Как и в случае с обстоятельством G, мы присваиваем **оценка серьезности 7** (пожар с травмами, материальный ущерб, перекрытие шоссе ...).

Негорючий (только газ-R-134a Air Duster).:

- Обстоятельства от А до С: Падение / Смещение / Раздавливание упаковки, приводящее к утечке или высвобождению содержимого: Персонал или оборудование подвергаются воздействию. Теплота сгорания такого продукта, как R-134a Air Duster, эквивалентна приблизительно нулю МДж на контейнер весом 10 унций. Следовательно, только разлив не будет иметь последствий, и степень опасности равна 1 (незначительная).
- Обстоятельство D: Раздавливание внешним предметом, приводящее к утечке или высвобождению содержимого: Утечка или высвобожденное содержимое подверглось воздействию источника воспламенения. В этом случае, поскольку содержимое аэрозольного баллона негорючее, воздействие источника воспламенения не меняет последствий по сравнению с простой утечкой. Следовательно, оценка серьезности равна 1 (незначительная). Обстоятельство
- Е: Раздавливание внешнего объекта Приводит к попаданию ракеты / реактивного снаряда. Следуя логике, приведенной выше в случае Е для негорючего примера, оценка тяжести равна 4 (множественные незначительные травмы). Обстоятельство F: Неисправный
- контейнер, приводящий к утечке или высвобождению содержимого: Персонал или оборудование подвергаются воздействию. Как и в случае с обстоятельством А, выброс содержимого с приблизительной теплотой сгорания ноль МДЖ не приводит к каким-либо последствиям, поэтому оценка степени тяжести равна 1 (незначительная). Обстоятельство G: Неисправный контейнер, приводящий к утечке или утечке содержимого: Утечка или утечка
- Содержимого, подвергшегося воздействию источника воспламенения. Как и в случае с обстоятельством D, выброс содержимого с приблизительной теплотой сгорания, равной нулю МДж, вблизи источника воспламенения не приводит к худшим последствиям, чем простой разлив, поэтому оценка серьезности равна 1 (незначительная). Сценарий H-I: Автомобильная авария (с пожаром), приводящая к утечке или выбросу содержимого.: Утечка или выброс
- содержимого, подвергшегося воздействию источника воспламенения. Следуя логике, приведенной выше, в обстоятельствах от H до I для Негорючего примера, взрыв остается возможным, поэтому оценка тяжести 4 (множественные незначительные травмы).

4.10 Краткое Изложение оценки рисков

Рейтинг серьезности, рейтинг возникновения и рейтинг смягчения последствий с результирующим RPN для каждого продукта и сценария представлены в таблице 4.13.

Таблица 4.13 Анализ режима отказа и последствий С полной оценкой

Содержание	Обстоятельства	Серьезность	Возникновение	Смягчение пос	ледствий ру
Легковоспламеняющийся (Средство для удаления вандальных следов)	Кондиционер	2	8.5	8.5	144.5
	D	7	8	3	168
	E	9	8	2	144
	F	2	2	9	36
	G	9	2	6.5	117
	H-I	9	3	8	216
Негорючее /воспламеняющееся средство для очистки деталей тормозов)	A-C	2	8.5	8.5	144.5
	D	7	8	3	168
	E	9	8	2	144
	F	2	2	9	36
	G	9	2	6.5	117
	H-I	9	3	8	216
Пегковоспламеняющийся /инсектицид Аэрозольный инсектицид)	AC	2	8.5	8.5	144.5
,,,,	D	6	8	3	144
	E	8	8	2	128
	F	2	2	9	36
	G	8	2	6.5	104
	H-I	8	3	8	192
Негорючий /Nonflammable	A-C	1	8.5	8.5	72.25
Автоматическая обработка кондиционером)		1			
	D	4	8	3	24
	E	1	8	9	64
	F	1	2	6.5	18
	G	4	2	0.5	13
	Н-И		3	8	96
Пегковоспламеняющийся материал Только газ-бутановое топливо)	A _C C	2	8.5	8.5	144.5
	D	7	8	3	168
	E	9	8	2	144
	F	2	2	9	36
	G	9	2	6.5	117
	Н-Я	9	3	8	216

Солержяние	Обстоятельства	Серьезность	Возникновение	Смягчение	RPN
Воспламеняющийся материал	Кондиционер-С		8.5	8.5	144.5
(Только для газа-воздушный пылесос HFC-152a)		2			
	D	5	8	3	120
	E	7	8	2	112
	F	2	2	9	36
	G	7	2	6.5	91
	ΗĮ	7	3	8	168
Негорючий	A-C	1	8.5	8.5	72.25
(только для газа -Воздушный пылесос R-134a)		1			
	D		8	3	24
	Е	4	8	2	64
	F	1	2	9	18
	G	1	2	6.5	13
	H-I	4	3	8	96

Источник: CS Team, 2019.

Общий RPN для каждого продукта и сценария представлен в таблице 4.14.

Таблица 4.14 Общее число приоритетных рисков в разбивке по продуктам и сценариям

Продукт	-A C	D	Е	F	G	-H
Легковоспламеняющийся /воспламеняющийся (средство для	144.5	168	144	36	117	Я 216
удаления вандальных следов) Негорючий / воспламеняющийся	144.5	168	144	36	117	216
(средство для очистки деталей тормозов) Легковоспламеняющийся /	144.5	144	128	36	104	192
инсектицид (аэрозольный инсектицид) Негорючий / Негорючий	72.25	24	64	18	13	96
(автоматическая обработка кондиционера) Легковоспламеняющийся	144.5	168	144	36	117	216
(только газ-бутановое топливо) Легковоспламеняющийся (только	144.5	120	112	36	91	168
газ-HFC-152a Air Duster) Негорючий (только газ - R-134a Air Duster)	72.25	24	64	18	13	96

Источник: CS Team, 2019.

5.0 Выводы и рекомендации

5.1 Выводы

- Никаких признаков повышенного риска. Результаты FMEA не указывают на повышенный риск при транспортировке аэрозольных баллонов, содержащих только газ, по сравнению с баллонами, содержащими газовое топливо и жидкость, порошок или пасту на основе сопоставимых НОС.
- . **Номера приоритета риска идентичны.** RPN для аэрозольных баллонов, наполненных только легковоспламеняющимся газом. Идентичны баллонам, наполненным легковоспламеняющимся пропеллентом и /или жидкостью, порошком или пастой. Эти RPN показаны в таблице 5.1 ниже.

Серьезность является наиболее важным показателем в FMEA. Поскольку баллы по смягчению последствий

и распространенности рассчитывались независимо от содержимого, наиболее важным баллом был балл по степени тяжести, поскольку серьезность определялась вероятностью травм, материального ущерба или смертельных исходов в результате воздействия содержимого аэрозоля (продукта и пропеллента).

Таблица 5.1 Наиболее серьезные RPN в разбивке по продуктам и сценариям

Продукт	Кондици	онер в	E	F	G	н-я-
Легковоспламеняющийся (средство для удаления вандальных	144.5	168	144	36	117	216
следов) Негорючий / легковоспламеняющийся (средство для очистки деталей	144.5	168	144	36	117	216
тормозов) Легковоспламеняющийся (только газ-бутановое топливо)	144.5	168	144	36	117	216

- Очиститель тормозных деталей и средство для удаления антивандальных следов имеют самую высокую эффективность. Результаты FMEA показали, что наивысший показатель НОС для рассмотренных продуктов был для (1) негорючего топлива и легковоспламеняющегося содержимого в очистителе деталей тормозов; и (2) горючее топливо и легковоспламеняющееся содержимое, смоделированное как средство для удаления антивандальных следов, также имели более высокую теплоту сгорания, чем только бутановое топливо.
- Международная организация гражданской авиации (ИКАО) не ограничивает использование аэрозолей. Группа CS обнаружила, что Технические инструкции ИКАО не ограничивают аэрозольные баллоны теми, которые выпускают жидкость, порошок или пасту, и не было задокументированных инцидентов, свидетельствующих о необходимости ограничить их использование, поскольку они содержат только газ.
- Очиститель тормозных деталей и средство для удаления антивандальных следов уже могут поставляться в виде аэрозолей в соответствии с НМR, за исключением ограниченного количества. Кроме того, хотя бутановое топливо технически не упаковывается в аэрозольный контейнер, такие продукты, как аэрозольные пылеуловители, упаковываются в аэрозольные контейнеры. В настоящее время для этих продуктов требуются специальные разрешения PHMSA, например, Специальные разрешения (SP) 20464, 10232, 14188 и 14286. SP-10232 продлевался 22 раза. Фактически, газоопасные материалы со специальными разрешениями были задействованы в общей сложности в шести инцидентах, о которых было сообщено PHMSA в период с 1971 по 2019 год, четыре из которых были связаны с SP-10232. Во всех случаях результатом была лишь утечка, без пожаров, взрывов, травм или смертельных исходов. Общий материальный ущерб, причиненный в результате этих шести инцидентов, составил 125 долларов, что в среднем составляет менее 3 долларов в год. Каждый из шести инцидентов с указанием причины и результата представлен в таблице 5.2.

Таблица 5.2 Инциденты с аэрозолями PHMSA, связанные со специальными разрешениями

	Дата происшествия	Причина инцидента	Результат инцидента
Специальное	6/23/1995	Раздавленная банка	Только Проливайте
разрешение 10232 10232	5/20/2010	Удар острым или выступающим предметом	только проливайте только проливайте
10232	1/10/2013	Человеческая ошибка	только проливайте
10232	1/15/2013	Человеческая ошибка	Без высвобождения
7951	1/15/2014	Незадекларированная отгрузка	- Не высвобождайте
7951	11/21/2014	Незадекларированная отгрузка	- Не высвобождайте

Источник:

Управление по безопасности транспорта, трубопроводов и опасных материалов Объединенного Государственного департамента, База данных об инцидентах с опасными материалами, https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch/Welcome.aspx.

5.2 Рекомендации

Хотя при транспортировке аэрозолей, соответствующих определению аэрозоля UNMR, не было обнаружено повышенного риска по сравнению с аэрозолями, соответствующими определению HMR, команда CS составила следующие рекомендации по дальнейшему снижению рисков при транспортировке аэрозоля.

• Проверьте содержание аэрозоля и пропеллентов. Хотя результаты FMEA предполагают, что HOC был важным показателем воспламеняемости, следует провести аэрозольные испытания, чтобы подтвердить результаты оценки риска. Это предоставит полезную информацию и данные для оказания помощи PHMSA в рассмотрении нормотворчества, необходимого для предлагаемой гармонизации правил HMR и UNMR, касающихся транспортировки аэрозолей. На этапе тестирования команда CS предлагает провести обзор литературы по существующим тестам на аэрозоль, два теста на воспламеняемость, тест на прокол и тест на удушье с использованием репрезентативных продуктов FMEA. Испытания на воспламеняемость, необходимые для HMR и UNMR, включают испытание на расстояние воспламенения и испытание на воспламенение в замкнутом пространстве. Для испытания на прокол команда CS предлагает провести испытание, имитирующее прокол аэрозольного распылителя и воздействие на него источника воспламенения, что, вероятно, приведет к более высокой скорости выброса, чем содержание аэрозоля, высвобождаемое через предусмотренный привод. • Улучшить информирование об опасности. Информирование об опасности, необходимое для

перевозка аэрозолей в соответствии с исключениями, касающимися ограниченного количества, предоставляет больше информации, чем большинство специальных разрешений, выданных на аэрозольные баллоны, заполненные только газом. Большинство специальных разрешений разрешают использование альтернативного отгрузочного наименования "Потребительский товар" и маркировки ORM-D, которая намного менее заметна по сравнению с упаковкой с пометкой об ограниченном количестве. 34

Маркировка ограниченного количества должна быть не менее 50 мм с каждой стороны. Однако большинство аэрозольных упаковок, замеченных членами команды CS во время посещений объектов и обсуждений с представителями отрасли, имеют маркировку ограниченного количества 100 х 100. Обозначение потребительских товаров/ ORM должно располагаться внутри прямоугольника, который примерно на 6,3 мм (0,25 дюйма) больше с каждой стороны, чем обозначение. Специальные разрешения не позволяют классифицировать продукты как "аэрозоли, ООН 1950", но в

большинстве случаев разрешают их транспортировку как "Товары народного потребления". Потребительские товары также

³⁴ Маркировка для почтовых отправлений в Соединенных Штатах, которая идентифицирует другие регулируемые материалы, предназначенные только для внутренних перевозок.

не требует сопроводительной бумаги, этикеток, информационных табло или упаковки со спецификациями и обеспечивает меньшую опасность сообщения, поскольку на упаковке нанесен только знак ORM-D и номер SP (см. Рисунок 5.1 и рисунок 5.2).

Упаковка аэрозольных баллонов, требующая специальной разрешительной маркировки Рисунок 5.1 Команда CS.

Упаковка аэрозольных баллонов С маркировкой

источник: **ограниченного количества Рисунок 5.2** Команда СS.

Если бы PHMSA разрешало использовать аэрозольные баллоны, наполненные только газом, в дополнение к маркировке ограниченного количества на упаковке могло бы потребоваться надлежащее отгрузочное наименование газа .

- Защита механизмов выброса аэрозоля. В соответствии с техническими инструкциями ИКАО, РНМSА следует рассмотреть вопрос о том, чтобы потребовать от всех аэрозольных баллонов наличия средств защиты механизма выпуска в виде защитного колпачка или предохранительного элемента, предотвращающего непреднамеренное высвобождение содержимого при нормальных условиях транспортировки. Это уже является стандартной отраслевой практикой, поэтому требование об этом через нормативные акты не окажет существенного экономического воздействия на отрасль. Поскольку производители не знают заранее, будут ли их аэрозольные баллоны отправлены воздушным транспортом, они должны предполагать, что они будут отправлены воздушным транспортом. Таким образом, все они, как правило, соответствуют дополнительным требованиям к перевозке воздушным транспортом. Газовые баллончики аналогичны баллонам с аэрозолями и разрешены для наполнения только газом. Как правило, применяются те же спецификации контейнера, и единственное отличие заключается в отсутствии устройства для выпуска. Однако тщательный осмотр этих емкостей показывает, что, хотя они и не имеют "выпускного устройства", они в некоторых случаях более уязвимы к непреднамеренному выбросу газа по сравнению с аэрозольным баллоном с защитой от выпускного механизма.
- **Ограничьте количество аэрозольных баллонов, содержащих содержимое только для газа.** PHMSA следует рассмотреть возможность ограничения использования аэрозольных контейнеров, содержащих только легковоспламеняющиеся газы, контейнерами по спецификации (ТОЧКА 2Р, ТОЧКА 2Q, ТОЧКА 2Q1), если только это не утверждено специальным разрешением.

6.0 Избранные Нормативные ссылки

6.1 Транспортируемые аэрозоли: погрузка и разгрузка

На основе обсуждений с различными представителями отрасли, наиболее распространенная причина повреждения баллона с аэрозолем или утечки содержимого связана с инцидентами при обращении, которые обычно происходят на складах, в распределительных центрах или пунктах выдачи посылок. Эти инциденты считаются "на транспорте", поскольку они происходят во время погрузки и разгрузки, связанных с перемещением, как определено в § 171.8 для погрузки или разгрузки, связанной с перемещением.

6.2 § 171.8 включает определения для погрузки и разгрузки

Погрузка, связанная с перемещением означает погрузку персоналом перевозчика или в присутствии персонала перевозчика упакованных или контейнеризированных опасных материалов на транспортное средство, самолет или судно с целью их транспортировки, включая погрузку, блокировку и крепление упаковки с опасными материалами в грузовом контейнере или транспортном средстве и отделение упаковки с опасными материалами в грузовом контейнере или транспортном средстве от несовместимого груза. Для упаковки навалом, погрузка при транспортировке означает заполнение упаковки опасным материалом с целью ее транспортировки. Погрузка при транспортировке включает перегрузку.

Разгрузка, связанная с перемещением означает извлечение упакованного или контейнеризированного опасного материала из транспортного средства, самолета или судна, или для упаковки навалом, выгрузку опасного материала из упаковки навалом после доставки опасного материала грузополучателю, когда это выполняется персоналом перевозчика или в присутствии персонала перевозчика, или, в случае частного автомобильного перевозчика, когда водитель транспортного средства, с которого выгружается опасный материал, сразу после завершения перевозки, присутствует при операции разгрузки. (Выгрузка опасных материалов из упаковки для массовых грузов, пока упаковка находится на борту судна, регулируется отдельными правилами, переданными Министерством внутренней безопасности № 0170.1 в 2 (103).) Разгрузка, связанная с перемещением, включает в себя перегрузку.

6.3 Пакеты дисплеев

Демонстрационная упаковка означает упаковку, предназначенную для размещения в местах розничной торговли, которые обеспечивают непосредственный доступ покупателя к потребительским товарам, содержащимся в упаковке, при снятии всей или части наружной упаковки из древесноволокнистого картона.

- (с) Демонстрационные пакеты. Демонстрационные упаковки потребительских товаров или упаковок ограниченного количества, вес брутто которых превышает 30 кг, как определено в §171.8 настоящего подраздела, могут перевозиться контейнером /прицепом в сервисном сервисе "прицеп-платформа" (ТОГС) или "контейнер-платформа-платформа" (СОГС), автопоездом и /или железнодорожными прицепами, автомобилем или грузовым судном при соблюдении следующих условий:
 - (1) У*паковка*. Комбинированные упаковки должны соответствовать требованиям подпункта В настоящей части и соответствовать следующим требованиям, в зависимости от обстоятельств:
 - (i) Первичные контейнеры должны соответствовать количественным ограничениям для внутренней тары, предписанным в \$\$173.150(b), 173.152(b), 173.154(b), 173.155(b) и 173.306 (a) и (b) соответственно.

- (ii) Первичные контейнеры должны быть упакованы в лотки, предохраняющие отдельные контейнеры от смещения внутри готовой комбинированной упаковки во время транспортировки.
- (iii) Лоток (ы) должен быть помещен в коробку из ДВП, а коробка из ДВП должна быть обвязана и прикреплена к поддону металлическими, тканевыми или пластиковыми ремнями, образуя единый блок на поддоне; и (iv) Максимальное количество опасных материалов нетто, допустимое для одной единицы на поддоне, составляет 550 кг (1210 фунтов). (2) Маркировка. Внешняя сторона каждой упаковки должна иметь четкую и долговечную маркировку в соответствии с одним из следующих соответствующих требований:
 - (і) в качестве потребительского товара, как предписано в § 172.316 настоящего подраздела; или
 - (ii) в ограниченном количестве, как предписано в §172.315 настоящего подраздела.

Приложение А. Определения и термины

Логистика сторонних производителей (3PL) заключается в использовании стороннего и неаффилированного бизнеса для передачи транспортных услуг на аутсорсинг, включая дистрибуцию, складирование или хранение, а также доставку.

Экспедиторы выступайте в качестве экспертов в области логистики и организуйте перевозки между покупателями и поставщиками, часто заключая контракты с несколькими перевозчиками

Меньше, чем загрузка грузовика (LTL) это перевозка товаров, которые не заполняют весь прицеп. Эти небольшие партии также можно комбинировать с другими

небольшие партии, чтобы эффективно использовать пространство в прицепе. Некоторые перевозчики специализируются на обслуживании клиентов LTL и участвуют в координации и логистике обработки самовывозов и поставок, требующих нескольких отправлений и пунктов назначения.

Полная загрузка грузовиков (FTL) это перевозка товаров с использованием грузового автомобиля, предназначенного для разовой отправки от места отправления до пункта назначения.

А **шасси** представляет собой несущую металлическую раму с осями и колесами, на которой установлен грузовой прицеп, а также соединен с седельным тягачом.

Вкатывание / откатывание (RO /RO) предназначены ли суда и железнодорожные вагоны для перевозки колесных грузов таким образом, чтобы весь грузовой автомобиль, включая прицепы к тягачу, можно было погрузить на железнодорожный вагон или судно. RO / RO также применяется к железнодорожным вагонам, которые могут быть вкатаны на суда.

Контейнер на платформе (COFC) представляет собой интермодальную единицу, состоящую из интермодального контейнера, который размещается на платформе для железнодорожных перевозок.

Прицеп на платформе (TOFC) яѕ интермодальная единица, в которой грузовой прицеп размещается на платформе для железнодорожных перевозок.

Контейнерами на платформе. Фото предоставлено: Мик Холл. (Куб.см К 2.0)

Прицеп на платформе

А.1 Определения из Закона о чистом воздухе, как определено в § 68.3 правила

"Стационарный источник" в основном означает установку. В САА и, следовательно, в части 68 термины "стационарный источник" и "установка" взаимозаменяемы.

"Процесс" этому правилу и документу придается широкое значение. Большинство людей думают о процессе как о смешивании или взаимодействии химических веществ. Его значение в соответствии с этим правилом намного шире. В основном это означает любое оборудование, включая емкости для хранения, и действия, такие как погрузка, которые связаны с регулируемым веществом и могут привести к случайному выбросу.

"Регулируемое вещество" означает одно из 140 химических веществ, перечисленных в части 68. "Пороговое количество" означает количество в фунтах регулируемого вещества, при превышении которого распространяется действие настоящего правила. Каждое регулируемое вещество имеет свое собственное пороговое количество. Если у вас в процессе используется количество регулируемого вещества, превышающее пороговое количество, вы должны соблюдать это правило.

"Сосуд" означает любой контейнер, от отдельного барабана или трубы до большого резервуара для хранения или сферы.

"Общественный рецептор" обычно означает любое место, где люди живут, работают или собираются, за исключением дорог. Здания, такие как жилые дома, магазины, офисные здания, промышленные объекты, территории вокруг зданий, где вероятно присутствие людей, такие как дворы и автостоянки, и зоны отдыха, такие как парки, спортивные арены, реки, озера, пляжи, считаются общественными рецепторами. "Экологический рецептор" означает ограниченное количество природных зон, которые официально обозначены правительством штата или федеральным правительством.

Приложение В. Информационно-пропагандистская деятельность в аэрозольной отрасли

B.1 Экспедитор, 26 апреля 2019 г.

Аэрозоли представляют повышенный риск для наземного транспорта из-за обозначения ограниченного количества. Однако при транспортировке не произошло ни одного инцидента. Перевозки в литах обычно осуществляются между зданиями и на сверхсветовой скорости перевозки между транспортными узлами. Местные перевозки осуществляются с использованием 28-футовых, 48-футовых или 53-футовых прицепов. Наземные грузы в ограниченных количествах отправляются на поддонах в литровых прицепах. Авиаперевозки грузов полностью регулируются и включают в себя в основном медицинские принадлежности, такие как ингаляторы, и высококачественные продукты, такие как краски, смолы, для военных нужд и морских покрытий. За последние 25 лет на воздушном транспорте не произошло ни одного инцидента с аэрозолями, отчасти благодаря более прочной конструкции ящиков. Высокоскоростные конвейерные системы получают все большее распространение, создавая опасность возникновения статического электричества. Некоторые повреждения возникают, когда коробки слетают с конвейеров, особенно за углами. За последние 60 дней на распределительных складах произошло четыре инцидента. В одном из примеров может взорваться аккумулятор типа 2.2, в результате чего один сотрудник был ранен осколками. По словам экспедитора, это был редкий случай. Этот пример помог команде CS разработать обстоятельства в рамках FMEA, которые подтверждали частоту возникновения таких инцидентов и то, как отрасль смягчала эти последствия.

В.2 Производитель аэрозолей, 8 и 14 мая 2019 г.

У этого производителя есть предприятия в США, Европе, Африке, на Ближнем Востоке и в Австралии с распределительными центрами для управления распределением на каждом континенте. Европейские производственные площадки расположены в Бельгии и Великобритании, а дистрибьюторские центры - в Германии, Финляндии, Франции, Испании и Венгрии. Не было никаких зарегистрированных инцидентов, связанных с аэрозолями при транспортировке. В США есть производственное предприятие с расположенным поблизости складом для дистрибуции на восточном побережье и еще один склад на Западе США для дистрибуции на западном побережье. Компания отправляет грузы из портов Филадельфии и Нью-Йорка на дальний Восток (в основном в Китай). Однако недавно Китай закрыл несколько портов из-за химических взрывов, не связанных с аэрозолями. Компания использует порт Майами для поставок в Южную Америку и порт Сан-Франциско для поставок в Азиатско-Тихоокеанский регион. Поставки в Канаду и Мексику осуществляются автомобильным транспортом. Большинство поставок составляют 6 или 12 банок в коробке, которые распространяются среди других дистрибьюторов и компаний, таких как MSC, Granger, West Cove, Amazon, Home Depot и Walmart. Контейнеры загружаются на суда в Азию и Южную Америку. Существуют проблемы с маркировкой, которые создают головную боль между пунктами назначения в США и за рубежом из-за различий в правилах. Например, банки 2P не могут быть отправлены в Европу, 2Q рассчитаны только на 12 бар, 2p и 2Q оба соответствуют требованиям в США. Каждый продукт измеряется на скрытое НОС при хранении, что определяет уровни NFPA 1, 2 и 3. Компания может производить 200 банок в минуту на одной машине и 400 банок в минуту на другой. Количество партий варьируется от 300 до 5000 банок в партии, в зависимости от заказчика. Все банки проходят испытание на водяной бане при температуре воды от 122 ° F до 140 ° F, и каждый час проверяют наличие пузырьков, чтобы определить, нет ли неисправности в банке. Коробки собираются в поддоны (по 6 слоев на поддон), или 114 коробок на поддон, по 20 поддонов на грузовик, в общей сложности 2280 аэрозолей на грузовик (для примера). В среднем в день происходит примерно пять разрывов коробок, поврежденных из-за неправильной обработки, и в среднем с вилочного погрузчика сбрасывается один полоз в год. Примерно два раза в месяц UPS предъявляет претензии, при этом повреждения возникают на последней миле, как правило, из-за неправильного обращения или размещения ящиков в грузовике рядом со стальными предметами. Эти типы отраслевых примеров помогли донести информацию об обстоятельствах, сложившихся в рамках FMEA. Процентное cooтношение LTL / FTL составляет 90/10 (большинство LTL), а процентное соотношение по посылкам (в основном UPS) - 200 посылок в день. LTL отправляется в Техас, как правило, трижды останавливается, и салазки упаковываются и доставляются заказчику в целости и сохранности.

В.3 Специалист по пожаротушению аэрозолями с производителем медицинских услуг - 17 мая

Это интервью было взято у специалиста по пожарной безопасности крупного производителя аэрозолей для здравоохранения, который входил в комитет, который в течение пяти лет пересматривал противопожарные стандарты уровней

1, 2 и 3 NFPA 30В. Они провели множество огневых испытаний и разработали протоколы аэрозольных работ и стандарты проектирования на основе этих испытаний. Обсуждение во время интервью было сосредоточено на рассмотрении вопроса о понимании НОС для всего содержимого баллона , и команда CS объяснила процесс FMEA и допущения на сегодняшний день относительно НОС для репрезентативных аэрозольных продуктов. Стандарты NFPA отличаются от классов газов

2.1 и 2.2, определенных в HMR и UNMR. Различные уровни представляют разные уровни риска для аэрозолей, хранящихся на складах и в распределительных центрах. Уровень 3 NFPA 30В представляет наибольший риск. Например, обычные топливные смеси имеют наивысший НОС, а уровень 3 включает нефтяные растворители (такие как WD40 и CRC), средства от насекомых, очистители карбюраторов и краски. Уровень 2 имеет более низкий риск и включает лаки для волос, а уровень 1 является самым низким риском и обычно включает аэрозоли на водной основе и пищевые продукты.

В.4 Производитель аэрозолей 21 июня 2019 г.

Компания производит нетоксичные, негорючие продукты с высоким уровнем регулирования. Топливо "Solstice" - это относительно новый продукт (1234ZE), в котором также используется петрофторпротеин HFO1234ZE производства Нопеуwell. Азот не обеспечивает достаточного давления для использования в качестве топлива и является слишком тяжелым. Продукт распространяется в США и Канаду только через контрактных перевозчиков. Клиенты также получают грузы непосредственно от производителя. Вилочные погрузчики иногда повреждают продукты - в результате они перешли на цельную конструкцию (клапан + привод) и используют защитное уплотнение вокруг крышки из клейкой ленты. Они отправляются только грузовым транспортом, если не требуется срочная перевозка грузов воздушным транспортом. Иногда образцы отправляются через Fed Ex. За последние 13 лет не было никаких инцидентов на наземном или воздушном транспорте.

В.5 Производитель аэрозоля 18 Июля 2019 г.

Этот упаковщик по контракту наполняет аэрозольные баллончики легковоспламеняющимися продуктами, и СО2 впрыскивается в баллончики через клапан. Они заправляют множество различных продуктов, включая WD40 и жидкость для запуска двигателя. Компания может перерабатывать 600 банок в минуту. Некоторые компании могут увеличить производственные циклы, поскольку требуется меньше модификаций. Компания заполняет стандартные канистры 2N, 2P и 2Q и следит за тем, чтобы давление оставалось в пределах DOT требуемых диапазонов. Они используют функции безопасности баллонов, в том числе выпускное отверстие на ободе для сброса давления в случае необходимости. Компания производит 100-процентные спреи duster, на которые приходится примерно 10 процентов их бизнеса. Они также производят продукты "полностью на пропане или бутане" в контейнерах для кухонных плит, горелок и т.д. Они содержат не более 4 унций жидкости и, следовательно, не нуждаются в регулировании. У них не было никаких инцидентов при транспортировке. Одним из интересных продуктов, на который распространяются правила, является средство для удаления плесени. Оно используется для удаления плесени из пластмасс и т.д. Средство для удаления плесени содержит 95 % пропеллента и пять % средства для удаления плесени (оба вещества легко воспламеняются). Это соответствует определению "аэрозоль", даже хотя продукт составляет менее пяти процентов. Команда CS поинтересовалась, можно ли поставлять в ограниченном количестве 100-процентный воспламеняющийся растворитель плесени, почему бы не 100-процентный бутан? Мы обсудили различия между сжиженным газом (пропан) и бутаном, которые имеют разные характеристики в фунтах на квадратный дюйм (PSI). Баллончики 2Q, 2N и 2P не могут содержать пропан, но бутан и обычный бутан можно добавлять в аэрозольный распылитель. Компания использует Fed Ex freight и других сверхсветовых и LTL перевозчиков, все они работают по контракту. Они имеют тот же профиль складирования и отгрузки, что и другие отрасли промышленности, при этом продукция поставляется на поддонах в распределительные центры, а затем потребителям через другие распределительные центры. Для большинства водителей нет никаких особых требований, поскольку компания производит почти исключительно поставки в ограниченном количестве. Однако для очень небольшого процента продуктов, содержащих "только бутан", требуются водители, прошедшие специальную подготовку по охране труда, и

расходы на транспортировку этих продуктов возрастают. Соблюдаются требования NFPA 30B для хранения аэрозолей на складах. Около 15 лет назад PHMSA изменила требования только к жидкости для запуска двигателя и разрешила поставлять этот продукт в виде аэрозоля в ограниченных количествах.

В.6 Производитель аэрозоля, 9 сентября 2019 г.

У этой компании есть шесть предприятий по производству аэрозолей в США, в основном на Северо-Востоке, Среднем Западе и в Техасе. Аэрозоли составляют менее пяти процентов их бизнеса, из которых 70 процентов приходится на аэрозольные краски и 30 процентов - на "другие аэрозольные продукты". Цепочка поставок аналогична другим отраслям промышленности, при этом производственные мощности США поставляются в другие страны, включая Канаду, Карибский бассейн, Мексику и Южную Америку. В одном примере при исследовании линейки продуктов они обнаружили, что более 1500 дистрибьюторов были задействованы в транспортировке только одного продукта, что иллюстрирует сложность и масштабы общего распространения аэрозолей по всей стране и по всему миру.

В.7 Производитель аэрозоля 8 октября 2019 г.

Ежегодно здесь производится 900 миллионов аэрозолей, или около 23 процентов всех аэрозолей, производимых в США. В настоящее время у них есть 15 предприятий: два в Джорджии, четыре в Миссури, три в Иллинойсе, три в Торонто, два в Калифорнии и одно в Массачусетсе. Заводы в Миссури, Иллинойсе и Канаде являются крупными предприятиями, остальные меньше по размеру. Представитель сообщил, что в среднем 200 грузовиков обслуживают эти объекты каждый день, или примерно 20 грузовиков на объект в день.

Приложение С. Инциденты, связанные с аэрозолями

С.1 Введение

В рамках оценки рисков, связанных с транспортировкой аэрозолей, Команда CS собрала и проанализировала данные об инцидентах, связанных с транспортировкой аэрозолей, как в Соединенных Штатах, так и в Канаде. Эти транспортные инциденты будут называться "инцидентами" или "инцидентами с аэрозолями" в оставшейся части этого отчета. Данные об инцидентах в США были получены из поиска PHMSA Hazmat Incident Report Search.
Канаде были предоставлены Transport Canada, правительственным агентством, ответственным за транспортную политику в Канаде. Данные из обоих источников касались инцидентов, связанных с опасными материалами, классифицированными как UN1950, код ООН по опасным материалам для аэрозолей.

Данные по

Данные из обоих источников были обработаны и проанализированы для включения только зарегистрированных случаев попадания газов в аэрозольные баллоны с выбросом вещества. После очистки данных с 1988 по 2018 год в Транспортную службу Канады поступило сообщение о 15 инцидентах с аэрозолями, а в PHMSA - о 36. Между США и Канадой существовали некоторые различия в отношении инцидентов с аэрозолями в зависимости от способа транспортировки или фазы транспортировки. Однако между США и Канадой не было существенной разницы в скорости воспламенения или взрыва при инцидентах с аэрозолями, несмотря на использование Канадой определения аэрозоля, принятого в UNMR, которое позволяет заполнять аэрозольный баллон только газом. В дополнение к подробным отчетам об инцидентах от Transport Canada и PHMSA, ВЭД предоставило описание девяти инцидентов, связанных с аэрозолями, которые произошли при перевозке грузовым транспортом с июля 2014 по июль 2019 года. Эти инциденты кратко описаны после обсуждения инцидентов в США и Канаде. Более подробная информация о методологии обработки данных, анализе и последующих результатах представлена ниже.

С.2 Обработка данных

Данные от Transport Canada и PHMSA были предоставлены в разных форматах и с разным уровнем детализации. Для сравнения инцидентов в США и Канаде были обработаны данные, обеспечивающие сравнение аналогичных уровней отчетности об инцидентах в обеих странах. Министерство транспорта Канады предоставило данные об инцидентах с аэрозолями в виде нескольких автоматизированных диаграмм. Эти данные были сначала переведены в рабочую книгу Excel для анализа. Всего в данные был включен 41 инцидент. Однако многие из этих инцидентов не сопровождались каким-либо выбросом вещества и были зарегистрированы потому, что они представляли собой незаявленные партии аэрозолей. После устранения любых инцидентов без выброса и любых инцидентов, не связанных с аэрозольными баллонами (было несколько инцидентов с участием железнодорожных цистерн или автоцистерн), в общей сложности осталось 15 инцидентов для дальнейшего анализа. В оставшейся части этого отчета эти 15 инцидентов будут называться "Канадскими инцидентами для сравнения". Данные PHMSA поступали из онлайн-базы данных поиска отчетов об инцидентах Наzmat и выводились в рабочую книгу Excel со столбцами, соответствующими полям формы отчета об инцидентах с опасными материалами DOT F 5800.1, используемой для отчетов об инцидентах. В данных было всего 5582 инцидента; однако, как и в данных Тransport Canada, данные PHMSA включали случаи незадекларированных поставок без разглашения

-

https://portal.phmsa.dot.gov/analyticsSOAP/saw.dll ?Информационная панель.

опасные материалы. Инциденты, которые были включены в окончательный анализ, касались разглашения содержимого и соответствовали требованиям отчетности канадских правил перевозки опасных грузов (TDG):36

- Утечка содержимого.
- •По крайней мере, одно из следующих событий:
 - Смерть.
 - Травмы.
 - Эвакуация или укрытие на месте.
 - Закрытие объекта, дороги, главной железнодорожной ветки или водного пути.

После устранения инцидентов, которые не соответствовали требованиям отчетности в Правилах TDG, всего осталось 36 инцидентов, связанных с аэрозолями, для дальнейшего анализа в данных PHMSA. Эти 36 инцидентов будут называться "Инцидентами для сравнения в США" в оставшейся части этого отчета.

С.3 Инциденты в Соединенных Штатах.

НМЯ США, 49 СFR, части 171-180, требуют сообщать об инцидентах, связанных с определенными типами опасных материалов. Раздел 171.15 НМЯ требует сообщить по телефону в Национальный центр реагирования в течение 12 часов после инцидента. Раздел 171.16 требует, чтобы об инцидентах сообщалось в PHMSA в течение 30 дней с момента инцидента через форму отчета об инциденте с опасными материалами DOT F 5800.1. Некоторые инциденты требуют, чтобы НМЯ обновлялся в течение одного года после инцидента. Отчеты требуются всякий раз, когда происходит инцидент в ходе транспортировки в коммерческих целях, в том числе во время погрузки, разгрузки и временного хранения. В таблице 6.1 представлены сводные данные о том, для каких инцидентов требуется отчет по телефону, об опасных материалах Отчет об инциденте и / или обновленный отчет об инциденте с опасными материалами.

 Таблица 6.1
 Правила США по обращению с опасными материалами

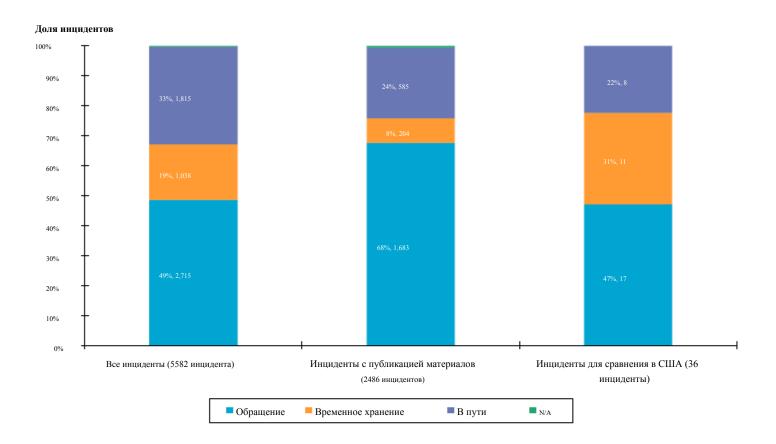
 Требования в отношении инцидентов с опасными материалами

	Сообщать об опасных мат		
Тип инцидента	в Национальный центр реагирования (в течение 12 часов)	Отчет об инциденте Форма ТОЧКА F 5800.1 (в течение 30 дней)	Обновленная форма ТОЧКА F 5800.1 (в течение одного года)
Прямое воздействие опасного материала: 1			
• Смерть любого человека.	•	®	•
• Травма, требующая госпитализации.	•	⊕	
Широкая общественность эвакуируется на один час или более.	•	•	
Закрыта крупная транспортная артерия или объект, или выключите устройство на один час или более.			

http://www.tc.gc.ca/eng/tdg/clear-menu-497.htm

	Сообщить по телефону об с	опасных материалах	
	в Национальный центр реагирования	Отчет об инциденте Форма DOT F 5800.1	Обновленная форма ТОЧКА F 5800.1 (в течение
Тип инцидента	(в течение 12 часов)	(в течение 30 дней)	одного года)
 Эксплуатационная схема полета или распорядок дня воздушного судна измененный. 	•	•	
Возгорание, поломка, утечка или предполагаемое			
радиоактивное загрязнение происходят с участием			
радиоактивного материала. Возгорание,			
поломка, утечка или предполагаемое загрязнение			
происходят с участием инфекционного вещества, отличного			
от регулируемых медицинских отходов. Выброс			
загрязнителя морской среды в количестве, превышающем			
450 литров (119 галлонов) жидкости или 400 кг			
(882 фунта) твердого вещества. Ситуация, не			
соответствующая никаким другим критериям, считается			
достаточно серьезной для лица, владеющего опасным			
материалом (например, на месте происшествия существует			
постоянная опасность для жизни). Возгорание,			
сильное разрушение, взрыв или опасное выделение тепла			
происходят непосредственно в результате работы	(транспортировка по	•	
аккумулятора устройства с батарейным питанием.	только для самолетов)		
Непреднамеренный выброс опасного материала или сброс			
любого количества опасных отходов. Грузовой танк,			
имеющий спецификацию вместимостью 1000 галлонов			
или более, содержащий какой-либо опасный материал,			
подвергается структурному повреждению системы			
удержания коносамента или повреждению, требующему		•	
ремонта системы, предназначенной для защиты системы			
удержания коносамента, даже если не происходит выброса			
опасного материала. Обнаружен незаявленный опасный			
материал. Неправильная идентификация опасного		АЙЬ	
материала или упаковки информация в предыдущем		•	
отчете. Становится известно о повреждении, утере или			•
связанных с этим расходах, которые не были известны при подаче			₩
первоначального отчета. Ущерб, утрата или связанные			
с ними расходы изменяются на 25 000 долларов или			
более, или на 10 процентов от предыдущей общей оценки,			
в зависимости от того, что больше.			∕™.
b subnetimental folio, 410 combine.			₩

 $\label{eq:condition} \begin{tabular}{ll} \begin{tabular}{ll} \textbf{Uсточник:} \\ 49 \ CFR \ \S \ 171.15-171.16, www.ecfr.gov/cgi-bin/text- idx?gp=\&SID=8cf7889b5f38cc703d5942c97e77a7bc\&mc=true\&tpl=/ecfrbrowse/Title49/49CIsubchapC.tpl. \\ \end{tabular}$


Соответствует требованиям отчетности канадских правил перевозки опасных грузов

в случае разглашения содержимого; включено в анализ.

C.3.1 Инциденты при хранении

В период с 1988 по 2018 год было зарегистрировано 5582 сообщения об инцидентах, связанных с опасными материалами, классифицированными как UN1950 в данных отчета PHMSA об инцидентах с опасными материалами. Из них 3753 инцидента, или 67 процентов от всех инцидентов, были зарегистрированы во время обработки (погрузки или разгрузочных работ) или на временном складе. Если рассматривать только инциденты, связанные с выбросом вещества, то всего было зарегистрировано 2486 инцидентов,

1887 (76 процентов) из которых произошли во время обработки или временного хранения. Из 36 случаев для сравнения в США 28 из них (78 процентов) произошли во время обработки или временного хранения. Примерно половина всех инцидентов происходит только при погрузочно-разгрузочных работах. На рисунке 6.1 показана разбивка инцидентов по этапам транспортировки для каждого набора инцидентов.

Инциденты, связанные с транспортировкой аэрозоля в Соединенных Штатах Рисунок 6.1 *C 1988 по 2018*

Источник

200 База данных PHMSA об инцидентах с опасными материалами

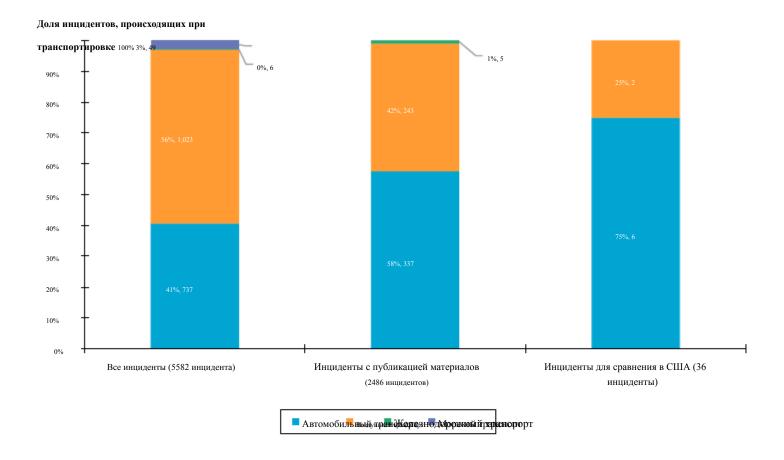
https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch/Welcome.aspx.

РНМЅА определяет серьезные инциденты как те инциденты, при которых выброс опасного материала приводит к одному или нескольким из следующих событий: смерти, серьезным травмам, приводящим к госпитализации, эвакуации 25 или более человек, перекрытию крупной транспортной артерии, изменению плана полета или эксплуатации воздушного судна, выходу из строя радиоактивной упаковки типа В, выбросу более 11,9 галлонов или 88,2 фунтов сильного загрязнителя морской среды или выбросу большого количества опасного материала (более 119 галлонов или 882 фунтов). Из 28 сравнительных инцидентов в США, произошедших во время обработки или временного хранения, 12 были классифицированы как серьезные инциденты, а 16 - как несерьезные. Все 12 серьезных инцидентов привели к эвакуации 25 или более человек, а один также привел к перекрытию крупной транспортной артерии. Во всех 12 случаях эвакуации были эвакуированы только сотрудники, и в восьми из 12 случаев произошел пожар. Единственный серьезный инцидент, приведший к перекрытию крупной транспортной артерии, также был связан с пожаром на объекте: закрытая транспортная артерия не названа, но, судя по описанию инцидента, это была дорога рядом с объектом. Ни один инцидент с хранением не привел к взрыву, смертельному исходу или травмам. В таблице 6.2 представлены сводные результаты для США Сравнительные инциденты.

Таблица 6.2

0 2	p	9 %
	С	<i>e c</i>
55 yst		m e
cs,	i	a t
		Sh

				1	Результаты и	нцидентов								ых, Изм				
	Утечка	Пожар	Взрыв	Faa Dispersi eku	Окружающая среда Ущерб	Oronь/kms Ответная реакция	Полиция	- Дом Вразовка	Другая Очистка	Урон > \$500	Серьезный инцидент	Фаталити	Травма	Серьезные инциденты легкие 25+ звакуированн		Закрыт	t Массовая vrpoза	Морской Цехотинец Загрязнение
Инцидент																		
Транзитное Хранение	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да Да	Нет	Нет	Нет
На Транзитном	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Хранении В	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Транзитное Хранение	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
На Транзитном	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Хранении В	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Транзитное Хранение	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет		Нет	Нет	Нет
На Транзитном	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Хранении В Транзитное	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Хранение На	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Транзитном Хранении	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
В Транзитное								Нет							Да			
Хранение На	Нет	Да	Нет	Нет	Нет	Да	Нет		Нет	Да	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Транзитном Хранении	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
В Транзитное	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет		Нет	Нет	Нет
Î	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет	Да	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Хранение Погрузка	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Погрузка Погрузка	Нет	Да	Нет	Нет	Нет	Да	Нет		Да	Да	Да	Нет	Нет	Нет	Да	Да	Нет	Нет
Погрузка Погрузка	Нет	Да	Нет	Нет	Нет	Да	Нет	Да Да	Нет	Да	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет
Погрузка Погрузка	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет
Выгрузка Разгрузка	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет
	Ди	1101	1101	Ди	1101	1101	1101	-	1101	1101	1101	1101	1101	1101		1101	1101	1101


	Утечка воды	Пожар	Взрыв	Fa3 Dispersi men	Окружающая среда Ущерб	Пожарбиз Ответная реакция	Полиция	- Дом Времания	Другие виды очистки	Урон > 8500	Серьезный инцидент	Смертельный исход	Травматизм	Серьезные инциденты легкие 25+ эвакуированн		Закрыт	t Maccoban vidosa	Морской Иехотинец Заглячение
Происшествия																		
Разгрузка,	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет Нет	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет
Разгрузка,	Да	Нет	Нет	Нет	Нет	Нет	Нет	нег	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет,
Разгрузка,	Да	Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет,_
Разгрузка,	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет,
Разгрузка,	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет,
Разгрузка,	Нет	Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет,
Разгрузка,	Нет	Да	Нет	Нет	Нет	Да	Нет	Да	Нет	Да	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет,
Разгрузка,		Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет		Нет	Нет	Нет		Нет	Нет	Нет
Инциденты с хранением	Да										Да				Да			
Промежуточный итог	22	8	0	11	0	5	0	9	1	5	12	0	0	0	24	1	0	0
	Нет										Да				Да			
Воздушный	Нет	Нет	Нет	Да	Нет	Да	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет
Воздушный	Да	Нет	Нет	Да	Нет	Да	Да	Нет	Да	Да	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет
Грузовик,	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет
Грузовик,	Да	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет
Грузовик,	Да	Нет	Нет	Нет	Нет	Да	Да	Нет	Да	Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет
Грузовик,		Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет	Нет
Грузовик,	Да	Нет	Нет	Нет	Нет	Нет	Нет	Да	Нет	Нет		Нет	Нет	Нет		Нет	Нет	Нет
Грузовик	Нет	Да	Нет	Нет	Нет	Нет	Нет	Да	Нет	Да	Да	Нет	Нет	Нет	Нет	Да	Нет	Нет
Транспортные	4	1	0	3	0	3	2	3	2	3	4	0	0	1	1	2	0	0

Результаты инцидента

Источник: База данных PHMSA Hazmat, 2019.

С.3.2 Транспортные происшествия

Из 5582 сообщений об инцидентах, связанных с опасными материалами, классифицированными как UN1950 в отчете PHMSA об инцидентах с опасными материалами в период с 1988 по 2018 год, 1815 инцидентов, или 33 процента всех инцидентов, произошли при транспортировке. Из них 56 процентов произошли при перевозке воздушным транспортом и 41 процент - во время перевозки автомобильным транспортом, а остальные произошли во время морских или железнодорожных перевозок. Из 2486 инцидентов, связанных с выбросом вещества, 585 (24 процента) произошли при транспортировке. Пятьдесят восемь процентов этих инцидентов произошли при перевозке грузовым транспортом и 42 процента - при перевозке воздушным транспортом. Согласно обсуждениям с различными представителями отрасли, наиболее распространенной причиной повреждения аэрозольных баллонов или утечки содержимого являются инциденты при обращении, которые обычно происходят на складах, в распределительных центрах или пунктах выдачи посылок. Эти инциденты считаются "на транспорте", поскольку они происходят во время погрузки и разгрузки, связанных с перемещением, как определено в § 171.8 для погрузки или разгрузки, связанной с перемещением ". При рассмотрении инцидентов, связанных со сравнением в США, и инцидентов, связанных со сравнением в Канаде, большинство инцидентов в обеих странах происходят во время обработки или временного хранения (например, на объектах). На этапе транспортировки, во время которого происходят инциденты с аэрозолями, нет существенной разницы в США и Канаде. Более низкий уровень инцидентов по воздуху при рассмотрении инцидентов, связанных с выбросом вещества, по сравнению с всеми отчетами указывает на то, что большинство инцидентов, произошедших по воздуху, не были связаны с выбросом какого-либо материала и вместо этого часто были связаны с незадекларированными товарами. Доля авиационных инцидентов еще больше снижается, если принять во внимание 36 аналогичных инцидентов в США. Всего при транспортировке произошло восемь инцидентов, 75 процентов из которых произошли во время перевозки грузовым транспортом и 25 процентов - во время перевозки воздушным транспортом. Среди этих 36 инцидентов не было сообщений об инцидентах, связанных с перевозкой железнодорожным или водным транспортом. На рисунке 6.2 показана разбивка инцидентов по этапам транспортировки для каждого набора инцидентов. Из восьми сравнительных инцидентов, произошедших в США при транспортировке, четыре были серьезными инцидентами. Один из серьезных инцидентов привел к эвакуации по меньшей мере 25 человек из самолета, когда туалетные принадлежности, находившиеся в зарегистрированном багаже пассажира, протекли и вызвали неприятный запах. Один серьезный инцидент привел к изменению плана полета, а два привели к закрытию крупной транспортной артерии. В общей сложности произошел один пожар из-за инцидентов при транспортировке, хотя ни один инцидент не привел к взрыву, травмам или смерти. Итоги инцидента обобщены на рисунке 6.2.

Рисунок 6.2 Инциденты с аэрозолями в Соединенных Штатах при транспортировке в разбивке по видам *C 1988 по 2018 год*

Источник:

Управление по безопасности транспорта, трубопроводов и опасных материалов Объединенного государственного департамента, База данных инцидентов с опасными материалами https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch/Welcome.aspx.

Грузовик

Как показано на рисунке 6.2, из восьми сравнительных инцидентов в США, произошедших при транспортировке, 75 процентов произошли во время перевозки грузовым транспортом, в общей сложности шесть инцидентов с 1988 по 2018 год. Два из этих шести инцидентов были серьезными инцидентами, оба привели к перекрытию крупной транспортной артерии. В одном случае водитель был вовлечен в столкновение, приведшее к пожару, а в другом водитель съехал на обочину после того, как другой водитель сообщил о дыме, исходящем из передней части прицепа и задней двери. Причиной инцидента, по-видимому, стали отходы, полученные на мероприятии по сбору, которые были неправильно маркированы, что привело к ненадлежащему обращению.

Железная дорога

Ни один из 36 инцидентов, рассмотренных в США для сравнения, не произошел во время транспортировки по железной дороге. С 1988 по 2018 год во время железнодорожных перевозок произошло в общей сложности шесть инцидентов. Одним из таких инцидентов была незаявленная поставка, четыре привели к утечке опасного материала и один - к пожару. Ни один из железнодорожных инцидентов не привел к травмам или смертельному исходу.

Морским путем

Ни один из 36 инцидентов, рассмотренных в США для сравнения, не произошел во время морской перевозки. С 1988 по 2018 год во время морских перевозок произошло в общей сложности 49 инцидентов, все из которых были незаявленными грузами, и ни один из них не привел к выбросу опасных материалов. В результате инцидентов во время морских перевозок никто не пострадал и не погиб.

Воздушные перевозки

Как показано на рисунке 6.2, из восьми сравниваемых инцидентов в США, произошедших при перевозке, 25 процентов произошли во время воздушной перевозки, в общей сложности два инцидента с 1988 по 2018 год. Оба инцидента были серьезными. Один из инцидентов привел к эвакуации самолета после того, как пилот почувствовал запах химикатов, которые были обнаружены в зарегистрированном багаже пассажира. В другом инциденте пассажир выпустил перцовый баллончик, приняв его за духи, когда самолет подруливал к выходу на посадку. По прибытии воздушное судно было выведено из эксплуатации для очистки, что привело к изменению плана полета для последующих рейсов, запланированных для использования этого воздушного судна.

С.4 Инциденты с аэрозолями в Канаде.

Правила TDG по транспорту Канады содержат требования к сообщению об инцидентах с опасными материалами , которые отличаются от требований НМК. Отчет о чрезвычайной ситуации должен быть подан в любой местный орган власти, ответственный за реагирование на чрезвычайные ситуации в географическом местоположении выброса или предполагающий выброс опасного товара, если выброс превышает количества, указанные в ТDG, и ставит под угрозу или мог бы поставить под угрозу общественную безопасность. Что касается аэрозолей, то выброс или ожидаемый выброс любого количества требует сообщения о чрезвычайной ситуации. Отчет о выбросе или предполагаемом выбросе должен быть подан по телефону как можно скорее в отношении опасных материалов, перевозимых автомобильным, железнодорожным или морским транспортом, когда выброс или ожидаемый выброс приводит к смерти человека, травмам, требующим лечения у специалиста здравоохранения, эвакуации или укрытия на месте или закрытию объекта, дороги, железнодорожной магистрали или главного водного пути. В качестве альтернативы, если средство удержания было повреждено так, что его целостность была поставлена под угрозу, или центральный порог или заглушка порога цистерны сломаны или в металле образовалась трещина не менее 15 сантиметров (6 дюймов), необходимо подать отчет. При перевозке опасных грузов воздушным транспортом отчет об аварии или инциденте с опасными грузами должен подаваться по телефону как можно скорее после инцидента, когда выброс или ожидаемый выброс ставит под угрозу или может поставить под угрозу общественную безопасность и привести к смерти или ранению человека, ущербу имуществу или окружающей среде, серьезной опасности для людей или воздушных судов, эвакуации или укрытию на месте, закрытию грузового объекта, аэродрома или взлетно-посадочной полосы, или есть признаки того, что целостность средств сдерживания нарушена. В дополнение к телефонному отчету, письменный отчет должен быть представлен в течение 30 дней с момента инцидента в вышеупомянутых случаях. В таблице 6.3 представлено краткое изложение требований к отчетности в TDG применительно к аэрозолям.

Таблица 6.3 Транспорт Канада Правила перевозки опасных грузов Требования к сообщению об инцидентах с аэрозолями

	Автомобил	выный, железнодорожный і	или морской транспорт	Воздушный
Тип инцидента с аэрозолем	Аварийный отчет по телефону	Выброс или отчет о предполагаемом выбр по телефоны1	Опасные грузы Отчет об аварии или росе инциденте по телефону Телефония1	Незадекларированный или Отчет о неправильно задекларированном опасном товаре по телефону
Выброс или ожидаемый выброс				
любого количества с результатом:				
 Представляет опасность или может представлять общественная безопасность 	опасность,			
•Смерть		•	•	
• Любая травма			•	
•Травма, приводящая к госпитализации		•		
• Эвакуация / укрытие на месте		•		
- Закрытие объекта, дороги, главного				
повреждена железнодорожная линия или главный				
водный путь Средства сдерживания				
таким образом, его целостность поставлена				
под Маркериальный / экологический ущерб			•	
Серьезную опасность для людей или Воздушное судно				
 Закрытие грузового авиапредприятия, аэродром или взлетно-посадочная полоса 			•	
Обнаружение опасных грузов				
без документации или маркировки				•
опасных грузов, требуемой TDG				
Источник: Гранспорт Канады, <i>Правила перевозки опасных гр</i>	узов, часть 8,			

http://www.tc.gc.ca/documents/SOR_2019-101.pdf. В течение 30 дней

C.4.1 Инциденты при хранении в Канаде

В период с 1988 по 2018 год было зарегистрировано 41 сообщение об инцидентах, связанных с опасными материалами, классифицированными как UN1950 в данных, предоставленных Transport Canada. Из них 27 инцидентов, или 66 процентов всех инцидентов, были зарегистрированы во время обработки (погрузки или разгрузочных **Жобо** сравнит времы иншидентов в Канаде, восемь из них (53 процента) произошли во время обработки или временного хранения. Примерно половина всех инцидентов произошла только во время обработки. На рисунке 6.3 показана разбивка инцидентов по этапам транспортировки для каждого набора инцидентов.

Один из 25 инцидентов был зарегистрирован во время работы железнодорожной станции во время осмотра вагона-цистерны.

после инцидента требуется письменный отчет о последующих действиях.

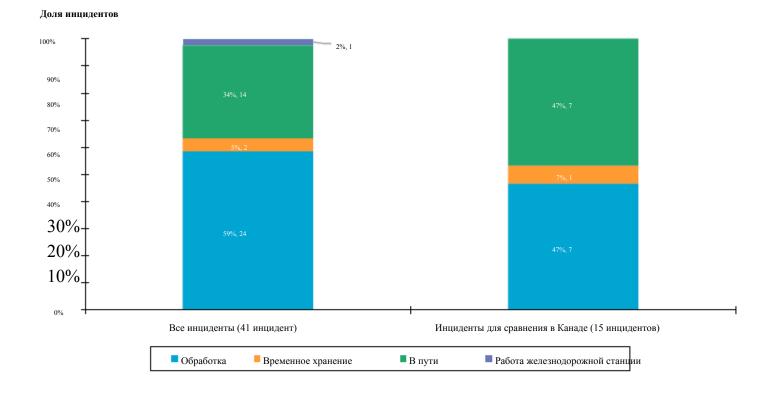


Рисунок 6.3 Инциденты с аэрозолями в Канаде с разбивкой по этапам транспортировки C 1988 по 2018 год

Источник: Транспорт Канады, "Краткий отчет об аварии: период 1988-2018 гг. включительно", электронное письмо Трейси Бойси Бобу Ричарду, 7 мая 2019 г.

Транспорт Канады определяет серьезность инцидента на основе 10 правдивых или ложных вопросов. За каждый положительный ответ начисляется один балл, а общее количество баллов отражает уровень серьезности. Инциденты, набравшие от 0 до 3 баллов, считаются незначительными, от 4 до 6 - средней тяжести, а от 7 до 10 - серьезными. Все инциденты для сравнения в Канаде были признаны инцидентами средней тяжести. Из восьми инцидентов, произошедших во время обработки или временного хранения, шесть привели только к разливу, один - к пожару и один - к взрыву. Отсутствие случаев хранения привело к травмам или смертельному исходу.

С.4.2 Транспортные происшествия в Канаде

Из 41 сообщения об инцидентах, связанных с опасными материалами, классифицированными как UN1950 в данных Транспортной службы Канады в период с 1988 по 2018 год, 14 инцидентов, или 34 процента всех инцидентов, были зарегистрированы при транспортировке. Из них 29 процентов произошли при перевозке воздушным транспортом, 36 процентов - при перевозке железнодорожным транспортом и 36 процентов - при перевозке автомобильным транспортом. При морской перевозке инцидентов не произошло. Как и в данных по США, в канадском отчете Comparison Incidents количество инцидентов воздушным транспортом было ниже, по сравнению со всеми отчетами, поскольку многие из инцидентов, произошедших воздушным транспортом, не были связаны с разглашением каких-либо материалов и вместо этого были связаны с незадекларированными товарами. В 15 канадских сравнительных инцидентах в общей сложности было семь инцидентов, произошедших в пути, 57 процентов из которых произошли во время перевозки грузовым транспортом, 29 процентов из которых произошли во время перевозки воздушным транспортом. Среди этих 15 инцидентов не было сообщений об инцидентах, связанных с морскими перевозками. Из семи канадских сравнительных инцидентов, произошедших в пути, все были инцидентами средней тяжести. Пять из них привели только к разливу, а два - к пожару. Два инцидента с возгоранием произошли во время транспортировки компанией

по железной дороге. Один из пожаров был вызван неисправностью нагревателя, а другой не имел установленной причины. В обоих случаях все содержимое было утеряно, но взрывов, травм или смертей не было. На рисунке 6.4 показана разбивка инцидентов по этапам транспортировки для каждого набора инцидентов.

Доля инцидентов, произошедших в пути.

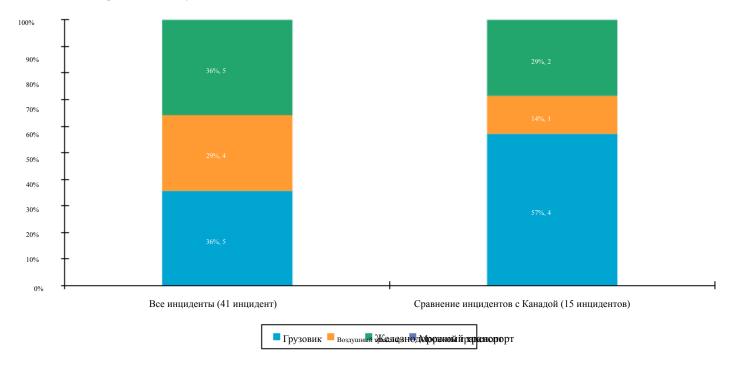


 Рисунок 6.4
 Инциденты с аэрозолями в Канаде при перевозке

 в разбивке по видам с 1988 по 2018 год

Источник: Транспорт Канады, "Краткий отчет об авариях: период 1988-2018 гг. включительно", электронное письмо Трейси Бойси Бобу Ричарду, 7 мая 2019 г.

Грузовик

Как показано на рисунке 6.4, из семи канадских сравнительных инцидентов, произошедших при транспортировке, 57 процентов произошли во время перевозки грузовым транспортом, в общей сложности четыре инцидента с 1988 по 2018 год, все из которых были инцидентами средней тяжести. Все четыре инцидента привели только к разливу. В трех случаях перемещение груза во время транспортировки привело к раздавливанию аэрозольных баллонов или повреждению клапана на аэрозольных баллонах. В результате ни одного из инцидентов никто не пострадал и не погиб.

Железнодорожный транспорт

Из семи канадских сравнительных инцидентов, произошедших при перевозке, 29 процентов произошли во время перевозки по железной дороге, в общей сложности два инцидента с 1988 по 2018 год, оба из которых были инцидентами средней тяжести. Оба инцидента привели к пожару. В одном случае пожар был вызван неисправным обогревателем, в то время как причина другого пожара неизвестна. Оба случая привели к полной потере продукта, но не привели к каким-либо взрывам, травмам или смертям.

Морские перевозки

Ни один из 41 инцидента, включенных в данные Transport Canada за период с 1988 по 2018 год, не произошел во время морских перевозок.

Воздух

Из семи канадских сравнительных инцидентов, произошедших при перевозке, 14 процентов произошли во время перевозки по воздуху, в общей сложности один инцидент средней тяжести с 1988 по 2018 год. В результате инцидента произошел разлив легковоспламеняющегося аэрозоля. Причина разлива неизвестна, он был обнаружен во время разгрузки грузового самолета. Инцидент не привел ни к каким травмам или смертям.

С.5 Сравнение инцидентов в Соединенных Штатах и Канаде.

При рассмотрении инцидентов, связанных со сравнением в США, и инцидентов, связанных со сравнением в Канаде, большинство инцидентов в обеих странах происходят во время обработки или временного хранения (например, на объектах). Нет существенной разницы на этапе транспортировки, во время которого происходят инциденты с аэрозолями в США и Канаде. Единственным видом транспорта, который существенно отличается по частоте инцидентов с аэрозолями, является железнодорожный.: В Канаде было больше инцидентов при железнодорожных перевозках, чем в США, но за 30-летний период там произошло только два инцидента, и один был вызван столкновением. На рисунке 6.5 показано сравнение инцидентов с аэрозолями по этапам транспортировки в США и Канаде, при этом столбики ошибок указывают диапазон наиболее вероятных значений с уровнем достоверности 95 процентов. На рисунке 6.6 показано сравнение инцидентов с аэрозолями в США и Канаде по видам транспортировки. При сравнении результатов инцидентов с аэрозолями в США и Канаде нет существенных различий в возникновении разливов, пожаров или взрывов в двух странах. Ни в одной стране не было инцидентов с использованием аэрозоля, приведших к травмам или смерти в период с 1988 по 2018 год. На рисунке 6.7 показано сравнение результатов инцидентов в каждой стране.

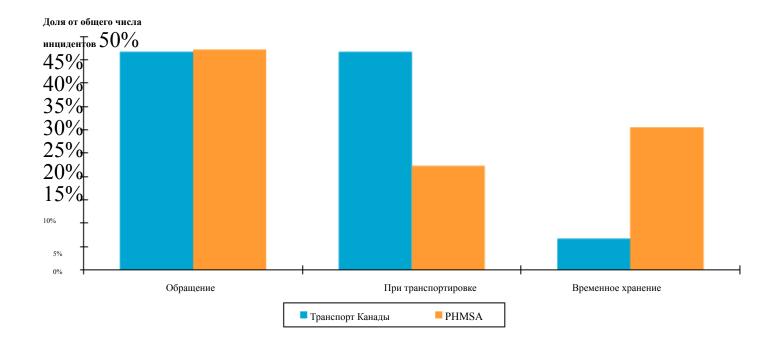


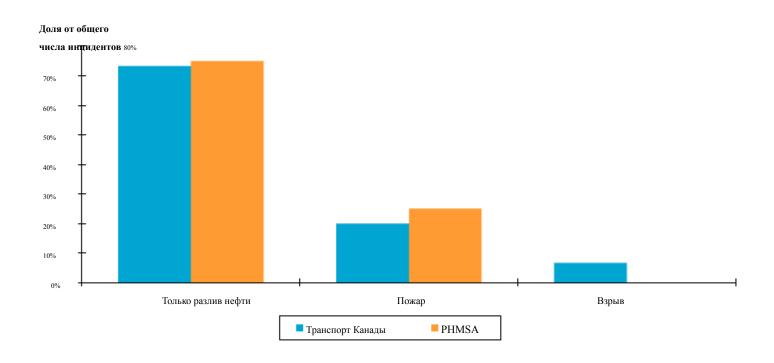
Рисунок 6.5 Сравнение инцидентов в Соединенных Штатах и Канаде по этапу транспортировки

Источники:

Управление по безопасности транспорта, трубопроводов и опасных материалов

Министерства Соединенных Штатов, База данных инцидентов с опасными

материалами https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch / Лобро пожаловать assax период 1988-2018 гг. включительно", электронное письмо от Транспортное управление Трейси Бойси - Бобу Ричарду, 7 мая 2019 г.



Сравнение инцидентов в Соединенных Штатах и Канаде по видам транспорта

Рисунок 6.6 Источники: Управление по безопасности транспорта, трубопроводов и опасных материалов Государственного департамента США,

База данных инцидентов с опасными материалами

https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch / Добро пожаловать.aspx. Транспорт Канады, "Краткий отчет об авариях: период 1988-2018 гг. включительно", электронное письмо от Трейси Бойси Бобу Ричарду, 7 мая 2019 г.

Рисунок 6.7 Сравнение инцидентов в Соединенных Штатах и Канаде по результатам

Источники:

Управление по безопасности транспорта, трубопроводов и опасных материалов Министерства Соединенных

Штатов, База данных инцидентов с опасными материалами

https://hazmatonline.phmsa.dot.gov/IncidentReportsSearch / Добро пожаловать.aspx. Транспорт Канады, "Краткий отчет об авариях: период 1988-2018 гг. включительно", электронное письмо от Трейси Бойси Бобу Ричарду, 7 мая 2019 г.

С.6 Крупные инциденты с участием грузовиков с аэрозолями - июль 2014 - июль 2019 гг. Европа, Австралия, Китай, Мексика и США.

ВЭД предоставило сводную информацию о девяти инцидентах с участием грузовиков с аэрозолями за пять лет, с июля 2014 по июль 2019 года. Из этих девяти инцидентов четыре произошли на территории Европейского союза, два в Австралии и по одному в Китае, Мексике и США. Эти девять инцидентов повлекли за собой значительный выброс материала, но только один привел к пожару. Один из инцидентов, который не был связан с пожаром, привел к закрытию главной дороги на В девяти инцидентах, представленных FEA, произошел один смертельный случай и один незначительный травматизм.

Все девять инцидентов были достаточно значительными, чтобы попасть в новости, и представляют собой экстремальные аэрозольные происшествия. Перевозимые аэрозоли не были указаны в качестве причины пожара ни в одном из инцидентов, приведших к пожару, но они были указаны как способствующие возникновению пожара. В инцидентах, в которых указывалась предполагаемая причина, источником воспламенения были искры, вызванные столкновением транспортного средства с другим транспортным средством, и тепло, выделяемое шиной

выброс, приводящий к воспламенению аэрозолей, или проблема в электрической системе прицепа (новостная статья не предоставлена).

nttps

https://www.bbc.com/news/uk-england-34060538

https://www.abc.net.au/news/2019-04-06/driver-killed-in-south-eastern-freeway-truck-crash/10978140

 $^{^{40} \}qquad https://www.dailymail.co.uk/news/article-5039993/Moment-lorry-trailer-packed-AEROSOLS-explodes.html.$

Приложение D. Американское общество по контролю качества, режим отказа и инструкции по анализу последствий

Эта процедура основана на формате ASQ: https://asq.org/quality-resources/fmea.

D.1 Процедура

Это общая процедура. Конкретные детали могут отличаться в зависимости от стандартов вашей организации или отрасли.

- Соберите многофункциональную команду людей, обладающих разнообразными знаниями о процессе,
 продукте или услуге и потребностях клиентов. Функции часто включали: проектирование, производство,
 качество, тестирование, надежность, техническое обслуживание, закупки (и поставщиков), продажи, маркетинг
- 1. (и заказчиков), обслуживание клиентов. Определите сферу охвата FMEA. Касается ли это концепции, системы, дизайна, процесса или услуги? Каковы границы? Насколько подробными мы должны быть? Используйте блок-схемы, чтобы определить область применения и убедиться, что каждый член команды понимает ее в деталях. (С этого момента мы будем использовать слово "сфера применения" для обозначения системы,
- 2. дизайна, процесса или услуги, которые являются предметом вашего FMEA.) Заполните идентификационную информацию в верхней части вашей формы FMEA. На оставшихся шагах запрашивается информация, которая
- будет введена в столбцы формы. Определите функции вашей области. Спросите: "Какова цель этой системы, дизайна, процесса или услуги? Чего ожидают от нее наши клиенты?" Назовите ее глаголом, за которым следует существительное. Обычно вы разбиваете область на отдельные подсистемы, элементы, детали, сборки или этапы процесса и определяете функцию каждой из них. Для каждой
- функции определите все способы, по которым она может выйти из строя. Это возможные способы отказа.
 Если необходимо, вернитесь назад и перепишите функцию более подробно, чтобы убедиться, что режимы сбоя показывают потерю этой функции. Для
- каждого режима отказа определите все последствия для системы, связанных систем, процесса, related процессы, продукт, услугу, клиента или нормативные акты. Это потенциальные последствия отказа. Спросите: "Что испытывает клиент из-за этого сбоя? Что происходит, когда происходит этот сбой?" Определите,
- 6. от 1 до 10, где 1 незначительный, а 10 катастрофический. Если режим сбоя имеет более одного эффекта, запишите в таблицу FMEA только наивысшую оценку серьезности для этого режима сбоя. Для каждого режима сбоя определите все возможные первопричины. Используйте инструменты из книг, таких как Quality
- 7. Toolbox, которые классифицируются как инструменты анализа причин, а также лучшие знания и опыт команды. Перечислите все возможные причины для каждого режима отказа в форме FMEA. Для каждой причины определите рейтинг возникновения, О. Этот рейтинг оценивает вероятность сбоя, произошедшего по
- 8. этой причине в течение срока службы вашей области применения. Вероятность возникновения обычно оценивается по шкале от 1 до 10, где 1 крайне маловероятно, а 10 неизбежно. В таблице FMEA укажите вероятность возникновения для каждой причины.

Для каждой причины определите текущие средства управления процессом. Это тесты, процедуры или механизмы, которые у вас теперь есть для предотвращения попадания сбоев к заказчику. Эти средства контроля могут предотвратить возникновение причины , снизить вероятность того, что это произойдет, или обнаружить сбой после того, как причина уже произошла, но до того, как это повлияет на клиента.

- Для каждого элемента управления определите рейтинг обнаружения, D. Этот рейтинг оценивает, насколько хорошо элементы управления могут определять причину или способ отказа после того, как они произошли, но до того, как это повлияет на клиента.
 Обнаружение обычно оценивается по шкале от 1 до 10, где 1 означает, что контроль абсолютно уверен в обнаружении проблемы, а 10 означает, что контроль уверен в том, что проблема не обнаружена, или контроля не существует. В таблице FMEA укажите рейтинг обнаружения для каждой причины.
- 11. (Необязательно для большинства отраслей промышленности) Связан ли этот режим отказа с критической характеристикой? Критический характеристики это измерения или индикаторы, которые отражают безопасность или соответствие государственным нормативам и требуют особого контроля. Если это так, столбец с надписью "Классификация" получает знак Y или, чтобы показать, что могут потребоваться специальные средства управления. Обычно критические характеристики имеют степень серьезности 9 или 10, а показатели встречаемости и обнаружения выше 3.
- 12. Рассчитайте номер приоритета риска, $RPN = S \times O \times D$. Также рассчитайте критичность $= S \times O$ путем умножения серьезности на возникновение. Эти цифры служат руководством для ранжирования потенциальных отказов в порядке, в котором они должны быть устранены.
- 13. Определите рекомендуемые действия. Этими действиями могут быть изменения конструкции или процесса для снижения степени серьезности или возникновения. Они могут быть дополнительными элементами управления для улучшения обнаружения. Также укажите, кто несет ответственность за действия и целевые сроки выполнения. По мере выполнения действий отмечайте результаты и дату в форме FMEA. Также обратите внимание на новые рейтинги S, O или D и новый RPN.

Приложение E. Подробные характеристики изделий, которые следует учитывать при анализе режима отказа и последствий

Е.1 Средство для удаления вандальных следов (легковоспламеняющееся)

Пример: Средство для удаления вандальных следов United 126,

SDS: https://www.unitedlabsinc.com/usa/content/pdf/msds/126sds.pdf.

Таблица 6.4 Технические характеристики средства для удаления вандальных следов

Номер ООН	UN1950
Класс (ы) опасности при	2.1
транспортировке: Надлежащее	Аэрозоли в Ограниченном количестве
отгрузочное наименование: Степень	3
воспламеняемости: Оценка для здоровья:	3 454
Вес нетто:	грамма

Таблица 6.5 Характеристики продукта для удаления антивандальных следов

Компонент	Расчетный процент по массе ¹	Повышенный нагрев Значение (кДж/г) ²	Пониженный нагрев Значение (кДж/г)	NFPA (кДж/г)
Пропан	6	50.3	[46]	44
Бутан	24	49.5	45.3	43.3
Толуол	25	42.4	[39]	28.4
Этанол	35	29.7	26.7	24.7
бутилацетат	5	[31]	[30]	27.6
Всего	100	37.4	34.2	30.2
Общая энергетическая ценность 16 унций (454 г)		17	15	14

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

Высокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d 1987.html.

Е.2 Средство для очистки тормозных деталей (негорючее/воспламеняющееся)

Пример:

Средство для очистки тормозных деталей CRC Brakleen®,

SDS: http://docs.crcindustries.com/msds/5151.pdf.

Таблица 6.6 Технические характеристики средства для очистки тормозных деталей

Номер ООН	UN1950
Класс (ы) опасности при	2.1
транспортировке: Надлежащее	Аэрозоли в Ограниченном количестве
отгрузочное наименование: Степень	4
воспламеняемости: Оценка	1
для здоровья: Вес нетто:	400-800 г.

Таблица 6.7 Характеристики продукта для очистки ломающихся деталей

Компонент	Расчетный процент по массе ¹	Более высокий нагрев Значение (кДж/г) ²	Более низкий нагрев Значение (кДж/г)	NFPA (кДж/г)
Диоксид	10	0.0	0.0	0.0
углерода	88	30.8	29.6	24.4
Ацетон Толуол	2	42.4	[39]	0.6
Bcero	100	28.0	26.7	24.9
Общая калорийность 14 унций (397 г)		11	11	10
Общая энергетическая ценность 29 унций (822 г)		23	22	20

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

² Высокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html.

Е.3 Аэрозольный инсектицид (легковоспламеняющийся / инсектицид)

Пример: Аэрозольный инсектицид Shur-Kill,

SDS: https://www.domyown.com/msds/Shur-Kill+AgriselSDS.pdf.

Таблица 6.8 Технические характеристики аэрозольного инсектицида

Номер ООН:	UN1950
Класс (ы) опасности при	2.1
транспортировке: Надлежащее	Аэрозоли в Ограниченном количестве
отгрузочное наименование: Степень	1
воспламеняемости: Оценка	1
для здоровья: Вес нетто:	454 г.

Таблица 6.9 Характеристики аэрозольного инсектицида

	Расчетный процентный п	оказательболее высокий нагрев	Более низкий нагрев	
Компонент	по массе	Значение (кДж/г)2	Значение (кДж/г)	NFPA (кДж/г)
Изопар-М	10	[48]	[45]	[41]
Пропан	6	50.3	[46]	44
Бутан	24	49.5	45.3	43.3
Запатентованная	60	N/A	N/A	N/A
формула Всего	100	19.6	18.1	13.5
Всего энергии на 16 унций (454 г)		9	8	6

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

² Высокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html.

Е.4 Автоматическая обработка кондиционера (негорючий)

Пример: Обработка системы кондиционирования A/C Pro® Rejuvenator,

SDS

 $http://acprocold.com/wp-content/uploads/2014/03/A-C-Pro-Rejuvenator-AC-System-\ \ \, \textit{N}\ \, \text{P}\ \, \text{P}\$

Таблица 6.10 Технические характеристики автоматического кондиционирования воздуха

Номер ООН:	UN3159
Класс (ы) опасности при	2.2
транспортировке: Надлежащее	Ограниченное Количество
отгрузочное наименование: Степень	0
воспламеняемости: Оценка	1
для здоровья: Вес нетто:	85 r.

Таблица 6.11 **Характеристики продукта Auto A/С**

	Расчетный процент	Более высокий нагрев	Более низкий нагрев	
Компонент	по весу	Значение (кДж/г)2	Значение (кДж/г)	NFPA (кДж/г)
1,1,1,2-тетрафторэтан,	60	[0]	[0]	[0]
Запатентованная формула,	40	[49]	[45]	[43]
Общая	100	19.6	18.0	17.2
Энергия для 3,0 унции (85 г)		1.6	1.5	1.5

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

² Высокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html.

Е.5 Только газ-бутановое топливо (легковоспламеняющееся)

Пример:

Универсальная жидкость для заправки неоновых зажигалок

бутаном; Заправка зажигалок Ronson, SDS:

http://doryventures.scene7.com/is/content/DoryVentures/Ronson/Website/Servicing/2017%20

Ronson % 20 Lighter % 20 Refill % 20 MSDS.pdf;

https://www.alliedelec.com/m/d/13e9d24b161b4cdaeca8ffb169344975.pdf;

https://www.boconline.co.uk/en/images/10021860_tcm410-55972.pdf

 $https://www.rssd.com/sharedimages/eshopmedia/msds/max_burton_butane_fuel_cartridge_s$

ds.pdf.

Таблица 6.12 Характеристики только газового топлива-бутана

Номер ООН:	UN1965
Класс (ы) опасности при транспортировке:	2.1
Надлежащее отгрузочное наименование:	Углеводородная газовая смесь, сжиженная, n.o.s.
Степень воспламеняемости:	2
Оценка работоспособности:	-не классифицирован
Вес нетто:	78 286 r

Таблица 6.13

Характеристики бутанового топлива - Только для газа

	Расчетное процентное содержающее высокий нагрев		Более низкий нагрев	
- Компонен г	по массе1	Значение (кДж/г)2	Значение (кДж/г)	NFPA (кДж/г)
Пропан	22	50.3	[46]	44
Бутан	24	49.5	45.3	43.3
Изо-Бутан	54	[49.5]	[45.3]	[43.3]
Bcero	100	49.6	45.5	43.4
Общая калорийность для 3,0 унции (85 г)		4.2	3.9	3.7
Общая энергетическая ценность 10,0 унции (284 г)		14.1	12.9	12.3

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

Bысокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html. Значения в скобках являются оценочными.

Е.6 Только для газа-распылитель воздуха HFC-152a (легковоспламеняющийся)

Пример: Пылеуловитель для сжатого газа, SDS:

https://www.sisweb.com/referenc/msds/dust-off-sds.pdf.

Таблица 6.14 Только для газа-технические характеристики воздушного пылеуловителя НFC-152а

Номер ООН:	UN1030
-Класс (ы) опасности при	2.1
транспортировке: Надлежащее	1,1, -дифторэтан
отгрузочное наименование: Степень	4
воспламеняемости: Оценка	1
для здоровья: Вес нетто:	340 r.

Таблица 6.15 Только газ-Характеристики продукта для очистки воздуха от пыли HFC-152а

Компонент	Расчетный процент по весу ¹	Больший нагрев Значение (кДж/г) ²	Меньший нагрев Значение (кДж/г)	NFPA (кДж/г)
1,1, -дифторэтан (R-152a)	100	[9]	[8]	6.3
Всего Общая	100	9	8	6.3
энергия для 12 унций (340 г)		3.1	2.7	2.1

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

Bысокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html. Значения в скобках являются оценочными.

E.7 Только для газа-распылитель воздуха R-134a (негорючий)

Пример:

Пылеуловитель для негорючего сжатого газа от Business Source,

SDS:

https://www.sprproductinformation.com/SDS/FAL/BusinessSourceNon-Flammable 134a Compressed Gas DusterSDS English Dec 2017.pdf.

Таблица 6.16 Только для газа-Технические характеристики пылесоса R-134a

Harris OOH.	UN3159
Номер ООН:	UN3139
Класс (ы) опасности при	2.2
транспортировке: Надлежащее	1,1,1,2-тетрафторэтан
отгрузочное наименование: Степень	0
воспламеняемости: Оценка	1
для здоровья: Вес нетто:	284 г.

Таблица 6.17 Только для газа-Характеристики продукта Air Duster R-134a

Компонент	Расчетный процент по массе ¹	Более высокий нагрев Значение (кДж/г) ²	Более низкий нагрев Значение (кДж/г)	NFPA (кДж/г)
1,1,1,2-тетрафторэтан (R-134а)	100	[0]	[0]	[0]
Всего Общая	100	0	0	0
энергия для 10 унций (284 г)		[0]	[0]	[0]

Источник: Анализ команды CS, 2019 год.

Расчетные процентные соотношения по массе выбраны таким образом, чтобы максимально увеличить процентное содержание продуктов с наибольшей теплотой сгорания.

Bысокая теплота сгорания, https://www.engineeringtoolbox.com/standard-heat-of-combustion-energy-content-d_1987.html. Значения в скобках являются оценочными.

Приложение F. Практические ограничения на пороховые газы в контейнерах DOT 2P и 2Q

HMR, в 49 CFR § 173.306 (а) (3) (і) и (іі) разрешает использование ограниченных количеств сжатых газов в металлических аэрозольных баллонах вместимостью до 1 л с общим давлением, которое не может превышать 180 фунтов на квадратный дюйм при температуре 54,4 ° С (130 ° F). Более того, точное количество контейнеров, разрешенных к использованию, из списка контейнеров без спецификации DOT, DOT 2P, DOT 2Q, и DOT 2Q1 варьируется в зависимости от максимально допустимого давления с пороговыми значениями 140, 160 и 180 фунтов на квадратный дюйм. Эти ограничения по давлению, в более широком смысле, ограничивают количество газа, которое потенциально может быть включено в баллоны 2Р или 2Q для использования в качестве аэрозольного топлива, поскольку в некоторых случаях добавление избыточного газа приведет к давлениям, превышающим пороговые значения. Воспроизводя таблицу из HMR, разрешенными контейнерами являются:

Разрешенные контейнеры (выдержка из НМР, Таблица 6.18

Если избыточное давление (psig) при температуре 54,4 ° С (130 °F) составляет 140 или менее	Разрешенный контейнер Спецификация без ТОЧЕК, ТОЧКА 2Р, ТОЧКА 2Q, ТОЧКА 2Q1		
Больше 160, но не более	ТОЧКА 2Q, ТОЧКА 2Q1		
180 Не должно превышать	ТОЧКА 2Q1 (только негорючая)		
210 140 или менее	Спецификация без ТОЧКИ, ТОЧКА 2Р, ТОЧКА 2Q, точка 2Q1		

Репрезентативные системы топлива, взятые из примерного набора содержимого контейнеров, используемого в этом упражнении по оценке риска FMEA, включают:

Репрезентативные системы топлива Таблицу 6.19

Пример содержимого	Используемое
Средство для удаления вандальных отметин United 126	топливо/включенный газ "Пропан/н-бутан" ⁴² (68476-86-8)
Очиститель тормозных деталей CRC Brakleen®	CO2 (124-38-9)
Аэрозольный инсектицид Shur-Kill	"Пропан/н-бутан"2 (68476-86-8)
Средство для омоложения системы кондиционирования	1,1,1,2-тетрафторэтан (811-97-2)
A/C Pro® Неоновая заправка газовых зажигалок Бутановой	Propel 40, 2,7 бар
универсальной жидкостью Пылеуловитель для сжатого газа	1,1-дифторэтан (75-37-6)
Пылеуловитель для негорючего сжатого газа от производителя	1,1,1,2-тетрафторэтан (811-97-2)

HMR, B 49 CFR §

Смесь пропан/н-бутан в двух продуктах представляет собой сложную комбинацию углеводородов, полученных путем обработки смеси сжиженных нефтяных газов процессом подслащивания для превращения меркаптанов или удаления кислотных примесей. Он состоит из углеводородов, имеющих количество углерода преимущественно в диапазоне от C3 до C7 и кипящих в диапазоне приблизительно от $40 \,^{\circ}$ C до $80 \,^{\circ}$ C (от $-40 \,^{\circ}$ F до $176 \,^{\circ}$ F).

Из предыдущего были определены следующие компоненты топлива:

- Пропан (74-98-6).
- Н-бутан (106-97-8).
- і-бутан (75-28-5).
- · CO₂ (124-38-9).
- 1,1,1,2-тетрафторэтан (811-97-2).
- 1,1-дифторэтан (75-37-6).

Соответствующие данные по пропан-н-бутановой топливной смеси и топливу Propel 40 отсутствуют, вместо этого в таблицу выше были включены составляющие их газы. 43

Расчеты идеального газа и данные для давлений и температур в таблице HMR, ограничивающие

давления в металлических аэрозольных баллонах, приведены ниже:

$$pV = nRT$$
, $n = pV/RT$

 $R = 0,0831446\ \mathrm{Л}\ \mathrm{бар}\ \mathrm{K}^{\text{--1}}$ мол--1

54,4 °C = 327,55 K

RT = 27,234

Таблица 6.20 Пороговые значения давления в баллоне

- Нороговое значение	Пороговое давление (бар, абсолютное)	Моли газа, содержащиеся в объеме 1 л
давления (psig) 140	10.67	0.3918
180	13.42	0.4928
140	10.67	0.3918

Пока топливо не является жидким при указанной температуре (130F) и пороговом давлении, количество газа, содержащегося в объеме одного литра, будет меньше или равно количеству молей, указанному в таблице выше. "Однако, если давление паров над жидкой фазой рассматриваемого топлива при 130 °F меньше порогового давления, попытка добавить топливо до этого порогового давления приведет к тому, что жидкое топливо будет конденсироваться внутри контейнера до тех пор, пока контейнер не заполнится жидкостью. Те, которые будут жидкими при пороговом давлении, показаны красным цветом. В таблице ниже указано, будет ли данное топливо газообразным или

Для выполнения этого упражнения необходимо знать детали зависимости давления топлива от температуры.

⁴⁴ Ниже приведен перевод молей в граммы для ряда материалов.

жидкость при пороговом давлении и количество пропеллента, которое может содержаться в 1-литровой банке. Количество газа основано на расчетах идеального газа; количество жидкости основано на сообщенных плотностях жидкости. Поскольку в таблицу включены конкретные данные о давлении пара для Propel 40 и смесей пропан/н-бутан, их отдельные составляющие компоненты. Азота и метана были включены для сравнения. Грамм пороха, содержащегося в 1 л, в 130 Ф:

Таблица 6.21 Компонентами ракетного топлива и ограничения давления

			Предельное Давло	ение
	Газ или жидкость при температур			
Компоненты топлива	при давлении 140 фунтов на квадра	гный дюй мофум жыл не кв	адратны і б (д фунт ов на ква	адратны і 8), фун тов на квадра
Азот (7727-37-9)		11.0	12.5	13.8
Метан (74-82-8)	Газ,	6.3	7.1	7.9
Пропан (74-98-6)	Газ,	17.3	19.5	21.7
н-бутан (106-97-8)	Жидкость	~540	~540	~540
і-бутан (75-28-5)	,Жидкость	17.2	19.5	21.7
CO2 (124-38-9)	Газ	40.0	45.1	50.3
1,1,1,2-тетрафторэтан (811-97-2)	Газ	25.6	29.2	32.5
1,1-дифторэтан (75-37-6)	Газ	11.0	12.5	13.8

Как отмечалось выше, ни в одном из наших примеров в качестве топлива не использовался чистый пропан, п- или i-бутан. В одном случае используется пропан/н-бутановая смесь (LPG), в другом пропан/н-бутан/i-бутан (Propel 40). Здесь не возможно предсказать их поведение, поскольку необходимые данные (давление пара над жидкостью в зависимости от температуры) недоступны. Однако в обоих случаях в смеси было мало пропана (16,5% для первого и 22% для второго); это делает весьма вероятной конденсацию этих продуктов при попытке довести их до указанного давления.

Приложение G. Воспламеняемость и кислородная недостаточность Условия для аэрозолей

К числу потенциальных опасностей, связанных с выделением аэрозолей, относятся удушье (кислородная недостаточность) и воспламеняемость. Выброс аэрозольных продуктов в достаточных количествах может вызвать одно или оба состояния в контейнере, в котором транспортируются продукты. Количество продукта, которое необходимо выпустить для получения результата в этих экстремальных условиях, зависит от размера транспортировочного контейнера. В контейнерах меньшего размера меньше воздуха, и поэтому для создания легковоспламеняющейся или удушающей атмосферы внутри контейнера потребуется выпустить меньшее количество аэрозольного продукта по сравнению с контейнером большего размера. Команда CS определила химические свойства семи различных веществ в соответствии с Законом идеального газа при температуре 25°C, чтобы определить количество каждого вещества, которое необходимо высвободить, чтобы вызвать удушье или воспламенение в транспортных контейнерах различных размеров. Были рассмотрены следующие семь веществ: • Диоксид углерода (CO₂), как газ.

- Этанол, как жидкость.
- і-Бутан, как жидкость
- н-бутан, как жидкость.
- Азот, как газ.
- . Пропан, как газ.
- Толуол в жидком виде.

Пределы воспламеняемости являются важными ориентирами для определения воспламеняемости этих веществ. Нижний предел воспламеняемости (LFL) - это наименьшая концентрация газа или пара в воздухе, которая способна вызвать вспышку или пожар в присутствии источника воспламенения, в то время как Верхний предел воспламеняемости (UFL) - это самая высокая такая концентрация. Выброс любого из веществ создает легковоспламеняющуюся среду в транспортировочном контейнере, если концентрация объема вещества, выброшенного в транспортировочный контейнер, превышает LFL и ниже UFL. Над UFL недостаточно кислорода для воспламенения. Для создания кислородоефицитной или удушающей среды концентрация объемного вещества, выбрасываемого в транспортный контейнер, должна превышать семь процентов. В этом случае воздух внутри контейнера испытывает недостаток кислорода и возникает риск удушья. При анализе опасностей, связанных с выбросом семи вышеупомянутых веществ, количество выброшенного вещества оценивалось в диапазоне от одного литра до 100 литров, что эквивалентно примерно одному на 100 аэрозольных баллонов. Размер транспортного контейнера мог варьироваться в пределах 5 кубических метров (м³)и 85 м³. Для справки, стандартный 8-футовый транспортный контейнер имеет объем примерно 12 м.³, и а

⁴⁵ Cогласно OSHA, любая концентрация кислорода ниже 19,5 процента является кислорододефицитной. Нормальный уровень кислорода составляет 21,0 процента, поэтому вытеснение более семи процентов воздуха газом приведет к образованию воздуха с дефицитом кислорода (https://www.osha.gov/SLTC/etools/shipyard/shiprepair/confinedspace/oxygendeficient.html).

стандартный 40-футовый транспортный контейнер имеет объем около 77 м³, таким образом, рассматриваемые объемы охватывают больше, чем диапазон вероятных размеров транспортных контейнеров. Результаты показаны на рисунке G-1. При анализе использовались диоксид углерода и азот, поскольку оба они негорючие, и поэтому они могли привести только к удушью. В общей сложности необходимо было бы выпустить 30 литров углекислого газа или газообразного азота в пятикубометровый контейнер, чтобы в результате в воздухе

образовался дефицит кислорода. Это количество увеличивается до 59 литров в контейнере объемом 10 кубометров и 88 литров в контейнере объемом 15 кубометров. Для создания воздуха с дефицитом кислорода потребуется выпустить более 100 литров в любые емкости большего размера. Наиболее интересный результат получен при исследовании н-бутана и толуола. Оба они содержатся в существующих аэрозольных продуктах, и потенциально только н-бутан мог бы поставляться в виде аэрозоля в случае, если определение аэрозоля в НМR было бы согласовано с определением в UNMR, позволяющим заполнять аэрозольный распылитель исключительно газом.

примерно 38 м.³ Дучитывая стандартный 20-футовый транспортный контейнер, объем транспортного контейнера составляет было бы высвободить примерно два литра толуола. Если высвободится более 11 литров, атмосфера внутри транспортного контейнера перестанет быть легковоспламеняющейся, но будет испытывать дефицит кислорода. Напротив, для создания легковоспламеняющейся среды в стандартном 20-футовом транспортном контейнере необходимо было бы выпустить три литра н-бутана. Если бы было выпущено от 12 до 14 литров, атмосфера внутри транспортного контейнера была бы одновременно легковоспламеняющейся и не содержала кислорода . Если бы было выброшено 14 или более литров, атмосфера больше не была бы легковоспламеняющейся, но была бы с дефицитом кислорода.

Средство для удаления вандальных следов, рассмотренное в анализе FMEA, содержит не только толуол, но также і-бутан и этанол, два других вещества с аналогичными профилями, как показано на рисунке 6.8. Это средство для удаления вандальных следов поставляется в виде аэрозоля в соответствии с текущим определением в HMR. Как обсуждалось в предыдущем параграфе и показано на рисунке 6.8, выброс н-бутана в количествах, эквивалентных толуолу, приводит к аналогичным рискам, однако аэрозольный распылитель, наполненный только н-бутаном, в настоящее время запрещен в соответствии с определением аэрозоля в HMR. Этот вывод, как и FMEA, предполагает, что аэрозольные распылители, заполненные только газом, не представляют большей опасности, чем те, которые уже заполнены в соответствии с текущим определением аэрозоля в HMR и заполнены газовым пропеллентом плюс жидкостью, порошком или пастой.

⁴⁶ H-бутан будет сжижен при давлении в аэрозольном распылителе.

Amount of Aerosol Contents Released (L)

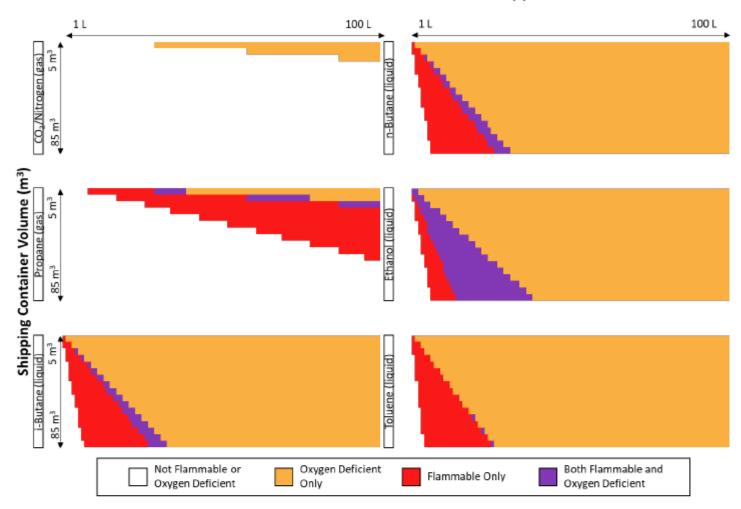


Рисунок $6.8\,{
m Y}_{
m C, 10B}$ ия для выбросов аэрозоля в воздухе, вызывающие воспламенение и удушье, в разбивке по размеру транспортировочного контейнера и количеству выпущенного аэрозоля Анализ команды CS, 2019 год.

Источник:

Приложение Н. Правила использования аэрозолей

В этом разделе указаны правила использования аэрозолей в США, Канаде и Мексике, а также UNMR, федеральная и государственная нормативная база в США, глобальная гармонизация и сравнение специальных разрешений США и UNMR на аэрозоль. Перевозка аэрозолей и других опасных грузов регулируется в разных странах различными национальными, видовыми и региональными правилами, которые основаны на Типовых правилах перевозки опасных грузов ООН. Эти правила, как правило, включают определение аэрозоля вместе с применимыми требованиями к транспортировке. В таблице 4.1 представлено сравнение требований к давлению в аэрозольных баллонах в США, Канаде и Европе, включая ограничения по размеру баллонов, нормативы давления и ограничения, эксплуатационные характеристики баллонов, толщину, а также требования к маркировке. Различные нормативные акты также включают положения об ограниченном количестве.

Таблица 6.22 Положения об аэрозольных баллонах в США, Канаде и Европе

			Максима	льная производите	ельность промужшам		Минимоли чос		
			Да	вление Темп.	произве	дительность баллонч	- -	ı	
		Может	Давление	(°C/F) (бар		Danyanuag	Толщина пласт	гины	
Страна	Оценка	огранич	иват фунт/ме р	дюйм)	Пряжка	Взрывная	(мм / дюйм)	Маркировка	
	Неспецификация			9.66/140	(стержень/фунт	волна (бар/ фунг г/кв. дюйм) 9.66/140 дюйм) 14.48/210	T/KB. N/A	Примечание	
	ТОЧКА 2Р	 1 литр	литр 54.4/130	11.03/160	11.03/160	16.55/240	0.18/0.007	TOUKA 2P+	
США и Канада	ТОЧКА 2Q			12.41/180	12.41/180	18.62/270	0.20/0.008	TOUKA-2Q +	
	Банка с минимальным давлением			12.41/180				Предоставляются освобожд банки.	денны
	при максимальном			6.7/97	10.0/145	12.0/174	N/A		
	"12 Fap"		50/122	8.0/116	12.0/174	14.4/209	N/A		
Европа2	"15 Бар"	_ 1 литр		10.0/145	15.0/218	18.0/261	N/A	Перевернуто Требуется	
P - "	"18 Бар"			12.0/174	18.0/261	21.6/313	N/A	эпсилон	
	Максимальное давление				12	12.0/174	18.0/261	21.6/313	N/A
Австралия	Минимальное может	1 литр пение ³		6.7/97	10.0/145	12.0/174	N/A		
	Другое (15.12.18)		50/122	P = давление (номинальный ба	1.5xP аллон)	1.8xP	N/A	N/A	
	Бар) Максимальное давле			12.0/174	18.0/261	21.6/313	N/A	_	
Япония4	Нет	Нет 1 литр ⁵	37/98	7,86/114	12.8/185	14.7/213	N/A	NVA	
			50/122	Р=давление	1.5xP	1.8xP	N/A	N/A	
Аргентина	Стандартный				10/145	15/219	N/A	Неизвестно	
	2P		Неизвестно	11.4/163	17.2/245	N/A	Неизвестно		
	2Q				12.8/185	19.4/281	N/A	Неизвестно	
Корея6	Нет		Неизвес	тный	12.8/185	14.7/213	0.22/0.0085	N/A	

Источник: Блюм, Джон Дж., доктор философии, 2012, презентация "Глобальные требования к прочности и эксплуатационным характеристикам аэрозольных баллонов".

- Символ или номер производителя должен быть зарегистрирован с точкой США.
- Европейские рейтинги являются условными, а не законом. Закон основан на давлении при 50°С / 122°F, и минимальное прогибание банки в 1,5 раза превышает это давление, а минимальный разрыв в 1,8 раза больше
- ³ этого давления. В Австралии также действует дополнительная норма "о негорючем сжатом газе" с максимальным давлением продукта 15 бар при 50°C / 122°F. Австралия применяет европейскую группировку 12/15/18
- ⁴ бар. Указанное в Японии давление является максимально допустимым. Для обеспечения производительности банки используйте вторую линию, но давление продукта не может превышать 7.86 бар / 114 фунтов на квадратный дюйм при 37°С / 98°F. Канистры объемом 1 литр и менее не подпадают под действие Закона о
- 6 безопасности газа в Японии. Нет никакой информации о давлении или температуре корейского продукта.

н.1 США

Закон о безопасности транспортировки опасных материалов 1975 года (НМТА) был принят для обеспечения единообразных правил перевозки опасных материалов в США. Он давал министру транспорта полномочия определять любое "определенное количество или форму" материала, который "может представлять необоснованный риск для здоровья и безопасности или имущества" в качестве опасного материала. НМТА отменяет любые государственные или местные требования к транспортировке опасных материалов, если только эти требования не обеспечивают такой же или больший уровень защиты населения, чем требования НМТА.

Транспортировка аэрозолей в США регулируется HMR (49 CFR, части с 171 по 180),

который предоставляет общую информацию об опасных материалах и правилах их упаковки и отправки

РНМSA является государственным учреждением, ответственным за железнодорожным, воздушным, морским транспортом и автомобильными дорогами общего пользования в США.47 разработка правил и стандартов в НМR. В 1990 году Конгресс принял

Единый закон о безопасности перевозки опасных материалов (HMTUSA), чтобы стандартизировать международные правила перевозки опасных материалов, рекомендованные ООН, и разъяснить любые противоречащие друг другу нормативные акты штатов, местные и федеральные нормативные акты, определив федеральное преимущество перед местными и штатными нормативными актами, которые отличаются от правил HMTA. HMTUSA включает положения, способствующие единообразию между различными государственными и местными правилами прокладки автомобильных дорог, разрабатывающие критерии для выдачи федеральных разрешений автомобильным перевозчикам опасных материалов и регулирующие перевозку радиоактивных материалов. В нескольких штатах действуют правила, касающиеся перевозки опасных материалов. По данным Национальной конференции законодательных органов штатов, лишь немногие штаты регулируют транспортировку всех опасных материалов, в то время как во многих действуют правила, касающиеся транспортировки опасных отходов и радиоактивных материалов. В общей сложности в 11 штатах действуют разрешительные требования, связанные с транспортировкой опасных материалов, и в пяти - регистрационные требования. Из этих штатов большинство принимают определение аэрозолей из НМR. Только в округе Колумбия и Огайо есть официальное определение аэрозоля, которое отличается формулировкой от определения, приведенного в НМR.

В муниципальных правилах округа Колумбия, § 20-799, аэрозольный продукт определяется как: "система распыления под давлением, которая распределяет ингредиенты продукта с помощью пропеллента, содержащегося в продукте или контейнере для продукта, или с помощью механического усилия, исключая распыление из насоса".

⁴⁹ CFR § 171-180, www.ecfr.gov/cgi-bin/text idx?gp=&SID=8cf7889b5f38cc703d5942c97e77a7bc&mc=true&tpl=/ecfibrowse/Title49/49CIsubchapC.tpl.

В штате Огайо аэрозоль определяется как "продукт, который выделяется из аэрозольного баллона с помощью пропеллента", а аэрозольный баллон определяется как "металлическая банка, или стеклянный или пластиковый флакон, предназначенный для распыления аэрозоля." Помимо государственных и национальных правил обращения с аэрозолями, ряд других агентств регулируют конкретное содержимое, разрешенное для определенных целей (например, медицинских), хранение, маркировку и упаковку аэрозолей. К ним относятся Федеральная торговая комиссия, Агентство по охране окружающей среды, NFPA, Управление по контролю за продуктами питания и лекарствами, Комиссия по безопасности потребительских товаров, Центры по контролю и профилактике заболеваний, Национальный институт безопасности и гигиены труда, Национальный институт стандартов и технологий и ОSHA. Конкретные правила каждого из этих агентств выходят за рамки настоящего отчета.

н.2 Канада

В Канаде транспортировка аэрозолей регулируется Правилами TDG.48 аэрозольный контейнер определяется как "изделие, состоящее из любых непереполняемых средств удержания, которое содержит вещество, находящееся под давлением, и которое оснащено самозакрывающимся устройством, позволяющим выбрасывать содержимое в виде: В разделе 1.4 приводится

- Твердые или жидкие частицы, взвешенные в газе.
- Вспененная паста или порошок.
- Жидкость или газ.

Определение аэрозольного баллона в TDG аналогично определению в UNMR; оба позволяют выбрасывать содержимое аэрозольного баллона в виде газа, позволяя заполнять баллон исключительно газом. Министерство транспорта Канады, отвечающее в правительстве Канады за Правила TDG, заявляет, что оно регулярно обновляет канадские правила для приведения их в соответствие с UNMR, ТІ ИКАО, IMDGC и HMR, где это возможно.

н.3 Мексика

Правительство Канады, *Правила перевозки опасных грузов*, 8 апреля 2019 г., www.tc.gc.ca/documents/tp-14877-ru.pdf.

[&]quot;Перевозка опасных грузов в Мексику и внутри нее", *Спрей: технология и маркетинг*. Февраль 2015 г., www.spraytm.com/transport-of-dangerous-goods-into-and-within-mexico.html.

Secretaría de Communicaciones y Transportes, NORMA Oficial Mexicana NOM-002-SCT/2011, Listado de las substancías y materiales peligrosos más usualmente transportadoes, 27 января 2012 г., www.sct.gob.mx/fileadmin/DireccionesGrales/DGAF/Normatividad/Materiales_y_residuos_peligrosos/NOM-002-SCT/2011.pdf.

Н.4 Организация Объединенных Наций

Комитет экспертов Экономического и Социального Совета ООН (ЭКОСОС) по перевозке опасных грузов разрабатывает UNMR для регулирования перевозки аэрозолей. Комитет экспертов ЭКОСОС ООН по перевозке опасных грузов состоит из представителей примерно 36 государств-членов; 15 межправительственных организаций (например, ИКАО, Всемирная организация здравоохранения, Международная морская организация и т.д.); и 40 неправительственных организаций (например, Европейская федерация аэрозолей, Международная ассоциация воздушного транспорта, Европейская ассоциация производителей баллонов, Международная организация автомобильного транспорта).

Производители транспортных средств и т.д.). UNMR не являются юридически обязательными нормативными актами для отдельных стран, но составляют основу для большинства международных соглашений. Они изменяются и обновляются раз в два года и распространяются среди стран по всему миру, служа основой для многих национальных, региональных и международных правил перевозки. UNMR содержит классификацию и определение классов; перечень основных опасных грузов; общие требования к упаковке; процедуры тестирования; маркировку или информационные табло; и транспортные документы. UNRR задуманы как рекомендация, но ООН заявляет: "Ожидается, что правительства, межправительственные организации и другие международные организации при пересмотре или разработке правил, за которые они несут ответственность, будут соответствовать принципам, изложенным в этих Типовых Правилах, способствуя таким образом всемирной гармонизации в этой области. Кроме того, следует в максимально возможной степени придерживаться новой структуры, формата и содержания, чтобы создать более удобный для пользователя подход, облегчить работу правоохранительных органов и снизить административную нагрузку ".

н.5 Специальные разрешения на аэрозоли

UNMR и HMR требуют специальных разрешений для перевозки определенных аэрозолей, не предусмотренных правилами. Команда CS изучила специальные разрешения, выданные PHMSA для аэрозольных распылителей "только для газа" (например, DOT-SP 11516). Соответствующих данных доступно не было, хотя почти каждое специальное разрешение требует сообщать об инцидентах, включая требование о том, что каждый получатель гранта должен уведомлять PHMSA Заместителя администратора Управления безопасности опасных материалов в письменной форме о любом инциденте, связанном с упаковкой или операцией, проведенной в соответствии с условиями специального разрешения. Это может означать либо то, что такие инциденты во время транспортировки являются редкостью, либо то, что получатели субсидий не сообщают об этом надлежащим образом. Согласно специальному разрешению 11516, аэрозольные баллончики не могут быть заполнены более чем на 79 процентов, а жидкая часть газа не может полностью заполнить баллон при любой температуре до 130° F. Контейнер должен быть способен выдерживать давление, в полтора раза превышающее равновесное давление содержимого при температуре 130 ° F, без разрыва. Конструкции Can различаются в разных странах, и это вызывает озабоченность у промышленности. В этом разделе описываются различия между специальными положениями UNMR и HMR (в частности, SP63 в UNMR и N82 в HMR). Эти два положения важны при изучении правил, регулирующих аэрозоли. Например, и США, и МОООН относят аэрозоли к подклассу 2.1 (Легковоспламеняющийся газ), если в состав входят 85% по массе или более легковоспламеняющихся компонентов и химическая теплота сгорания составляет 30 кДж/г или более. Как в США, так и в UNMR аэрозоли относятся к подклассу 2.2 (негорючий газ), если в их содержимом содержится один процент по массе или менее легковоспламеняющихся компонентов, а теплота сгорания составляет менее 20 кДж/г. Существуют также идентичные требования к токсичным веществам. В HMR вещества подкласса 6.1, PG I или II, и вещества класса 8, PG I, запрещены к транспортировке в виде

Мэншн, Сабрина, "Перевозка опасных грузов: механизмы разработки и согласования Правил перевозки опасных грузов", 7 марта 2008 г. www.osce.org/eea/31022?download=true

контейнер. В UNMR аэрозоли, содержимое которых соответствует критериям группы упаковки I по токсичности или коррозионной активности, должны быть запрещены к перевозке (таблица Н.2).

Таблица 6.23 Сравнение специальных разрешений для 49 CFR и типовых правил ООН

49 CFR N82 (§173.115)

N82См. §173.115 этого подраздела для критериев классификации легковоспламеняющихся аэрозолей.

§173.115(1) Нижеследующее относится к аэрозолям (см. §171.8 этого подраздела).:

- (1) Аэрозоль должен быть отнесен к подклассу 2.1. если в его состав входят 85% по массе или более легковоспламеняющихся компонентов, а химическая теплота сгорания составляет 30 кДж/г или более.
- (2) Аэрозоль должен быть отнесен к подклассу 2.2, если его содержимое содержит 1% по массе или менее легковоспламеняющихся компонентов и теплота сгорания составляет менее 20 кДж/г.
- (3) Аэрозоли, не соответствующие положениям пунктов (l)(1) или (1)(2) настоящего раздела, должны быть классифицированы в соответствии с соответствующими испытаниями Руководства ООН по испытаниям и критериям (IBR, см. §171.7 настоящего подраздела). *Дэрозоль, который был испытан в соответствии с требованиями к топливу в аэрозольном баллончике. этот подраздел, действующий с 31 декабря 2005 г., не требует повторных испытаний.
- (4) Газы подкласса 2.3 не могут перевозиться в аэрозольном баллоне.
- (5) Если содержимое классифицируется как подкласс 6.1, PG III или класс 8, PG II или III, то аэрозолю должна быть присвоена дополнительная опасность подкласса 6.1 или класса 8, в зависимости от обстоятельств.
- (6) Вещества подкласса 6.1, пункт I или II, и вещества класса 8, пункт I, запрещены к транспортировке в аэрозольном контейнере.
- (7) Легковоспламеняющимися компонентами являются легковоспламеняющиеся жидкости класса 3. легковоспламеняющиеся твердые вещества подкласса 4.1, или легковоспламеняющиеся вамонагревающиеся или реагирующие с водой подкласса 2.1. Химическая теплота сгорания должна определяться в соответствии с Руководством ООН по испытаниям и критериями (IBR, см. §171.7 этого подраздела).

Типовые правила ООН SP 63

- 63 Отнесение к классу 2 и дополнительные опасности зависят от характера содержимого аэрозольного распылителя. Должны применяться следующие положения:
- а) подкласс 2.1 применяется, если в состав входят 85 процентов по массе или более легковоспламеняющихся компонентов , а химическая теплота сгорания составляет 30 кДж/г или более
- (b) Подкласс 2.2 применяется, если содержимое содержит 1 процент по массе или менее легковоспламеняющихся компонентов , а теплота сгорания составляет менее 20 кДж/г.
- (с) в противном случае продукт должен быть классифицирован как испытанный с помощью испытаний, описанных в Руководство по испытаниям и критериям, Часть III, раздел 31. Чрезвычайно легковоспламеняющиеся и легковоспламеняющиеся аэрозоли должны быть отнесены к подклассу 2.1; негорючие - к подклассу 2.2;53
- (d) газы, относящиеся к подклассу 2.3, не должны использоваться в качестве
- е) Если содержимое, отличное от пропеллента, выбрасываемых аэрозольных распылителей, классифицируется как материалы II или III группы упаковки подкласса 6.1 или класса 8, группы упаковки II или III, аэрозоль должен обладать дополнительной опасностью подкласса 6.1 или класса 8. (f) аэрозоли, содержимое которых соответствует критериям для группы упаковки I по токсичности или коррозионной активности, должны быть запрещены к перевозке. (g) для воздушной перевозки могут потребоваться дополнительные знаки опасности. легковоспламеняющимися компонентами являются легковоспламеняющиеся жидкости, легковоспламеняющиеся твердые вещества или легковоспламеняющиеся газы и смеси газов, как определено в примечаниях 1-3 к подразделу 31.1.3 Части III настоящего стандарта. Руководство по испытаниям и критериям. Данное обозначение не распространяется на вещества. Химическая теплота сгорания должна

определяться одним из следующих методов

Это относится к расстоянию до пламени, испытаниям в ограниченном пространстве и испытаниям пены 53 То же, что и выше.

ASTM D 240, ISO/FDIS 13943: 1999 (E/F) с 86.1 по 86.3 или NFPA 30B.

Источник: 49 CFR N82 (§173.115); Типовые правила ООН SP 63, анализ группы CS, март 2020 г.

Н.6 Глобальная гармонизация.

Согласованная на глобальном уровне система классификации и маркировки химических веществ (СГС) была принята ООН в 2003 году. Она включает критерии классификации опасностей для здоровья, физических свойств и окружающей среды. Он также включает спецификации информации, которую следует включать в этикетки опасных материалов и паспорта безопасности (SDS). СГС не является нормативным актом, но обеспечивает основу, которую регулирующие органы могут использовать для согласования элементов классификации и коммуникации по своему выбору. СГС была разработана для обеспечения безопасности работников и потребителей, а также защиты окружающей среды; до ее разработки правила значительно различались, за исключением случаев транспортировки, когда действовали Типовые правила ООН. Он направлен на обеспечение основы для гармонизации правил и подзаконных актов по химическим веществам на национальном, региональном и мировом уровнях, что является важным фактором упрощения процедур торговли. СГС был принят ОЅНА в США в 2012 году, согласовав глобальную коммуникацию о рисках, связанных с химическими веществами, обнаруживаемыми на рабочем месте, в соответствии с 29 CFR § 1910.1200, Стандартом информирования об опасности (HCS). HCS устанавливает требования к этикеткам и стандартизирует SDSS, которые должны сопровождать опасные химические вещества и содержать более полную информацию об обращении с ними. Существует несколько различий между НСЅ и СГС, в частности, в отношении идентификации опасности, маркировки и требований SDS, а также классификации аэрозолей (например, HCS имеет один класс / категорию опасности для легковоспламеняющихся аэрозолей и не требует испытаний. СГС имеет две категории опасности). Эксперты ожидают, что OSHA согласует классификацию аэрозолей с СГС посредством инициативы по разработке правил.

Н.6.1 Классификация опасностей в стандарте информирования об опасности.

Существенное различие между HCS и GHS заключается в оценке смесей. HCS позволяет использовать данные испытаний смесей для всех классов опасности, в то время как критерии СГС для смесей различаются в зависимости от класса опасности, позволяя тестировать данные на канцерогены, мутагены и репродуктивные токсины в каждом конкретном случае. В системе ЖКХ производители и импортеры химикатов должны оценивать химические вещества, произведенные на их рабочих местах или импортированные ими, чтобы определить, являются ли они опасными. Эта оценка должна основываться на статистически значимых доказательствах, полученных по крайней мере в одном положительном исследовании, проведенном в соответствии с установленными научными принципами. В СГС критерии для многих классов опасности являются полуколичественными или качественными, что требует экспертного заключения для интерпретации данных в целях классификации. При проведении классификации опасностей в соответствии с СГС необходимо идентифицировать данные, касающиеся опасностей вещества или смеси, проанализировать эти данные, чтобы определить опасности, связанные с веществом или смесью, и определить степень опасности, которую представляет вещество или смесь, путем сравнения данных с критериями классификации опасностей. СГС не требует научного исследования, как в случае с ЖКУ. Одной из основных опасностей при транспортировке аэрозолей является воспламеняемость. Аэрозоли классифицируются как чрезвычайно легковоспламеняющиеся (категория 1), легковоспламеняющиеся (категория 2) или негорючие (категория 3) в СГС. В СГС аэрозоли классифицируются в соответствии с классификацией наиболее легковоспламеняющегося компонента, составляющего более одного процента (по массе) компонентов аэрозоля. В отличие от этого, в НСЅ аэрозолем является

классифицируется по количеству содержащегося в нем легковоспламеняющегося материала, теплоте сгорания содержимого или по результату испытания на воспламеняемость. В СГС аэрозоли определяются как:

"Аэрозоли означают любые сосуды, изготовленные из металла, стекла или пластмассы и содержащие газ, не подлежащий повторному заполнению сжатый, сжиженный или растворенный под давлением, с или оез жидкость, паста или порошок, и снабженный выпускным устройством, позволяющим выбрасывать содержимое в виде твердых или жидких частиц во взвешенном состоянии в газе, в виде пены, пасты или порошка или в жидком состоянии или в газообразном состоянии. Аэрозоль включает в себя аэрозольные распылители. HCS OSHA определяет аэрозоли как:

"Аэрозоль означает любой невозобновляемый сосуд, содержащий газ, сжатый, сжиженный или растворенный под давлением, и снабженный выпускным устройством, позволяющим выбрасывать содержимое в виде частиц во взвешенном состоянии в газе или в виде пены, пасты, порошка, жидкости или газа". Определение OSHA не ограничивает аэрозоль содержанием только газа.

Н.6.2 Требования к маркировке в Стандарте информирования об опасности

В соответствии с HCS, этикетки для опасных химических веществ должны включать идентификатор продукта; сигнальное слово; заявление об опасности; заявление (ы) о мерах предосторожности; пиктограмму (ы); и название, адрес, и номер телефона производителя химических веществ, импортера или другой ответственной стороны. Каждый из этих элементов описан ниже.

Идентификатор продукта: Это может быть (но не ограничиваясь этим) название химического вещества, кодовый номер или номер партии по решению производителя, импортера или дистрибьютора. Идентификатор продукта должен совпадать с обозначением на этикетке и в разделе 1 SDS. Сигнальное слово: используется для обозначения относительного уровня серьезности опасности и может быть только одним из двух слов: "Опасность" или "Предупреждение". В пределах определенного класса опасности "Опасность" обозначает более серьезные опасности, а "Предупреждение" - менее серьезные опасности. Этикетка может содержать только одно сигнальное слово и должна быть помечена словом "Опасность", если хотя бы одна из опасностей требует такой маркировки. Заявления об опасности: В этих заявлениях описывается природа опасности (опасностей) химического вещества, включая, при необходимости, степень опасности. Указания об опасности относятся к конкретным категориям классификации опасностей и всегда должны быть одинаковыми для одних и тех же опасностей. Меры предосторожности: В этих заявлениях описываются рекомендуемые меры, которые следует принять для сведения к минимуму или предотвращения побочных эффектов, возникающих в результате воздействия опасного химического вещества или неправильного хранения или обращения. Существует четыре типа мер предосторожности: 1) предотвращение (для минимизации воздействия); 2) реагирование (в случае случайной утечки или воздействия); 3) хранение; и 4) утилизация. Пиктограммы: Это графические символы, используемые для передачи конкретной информации об опасностях химического вещества. Требуемые пиктограммы состоят из красной квадратной рамки, установленной в точке с черным символом опасности на белом фоне, достаточно широким, чтобы его было хорошо видно. СГС использует в общей сложности девять пиктограмм, но OSHA предписывает использовать только восемь. Пиктограмма окружающей среды

не является обязательной, но может использоваться для предоставления дополнительной информации. Пиктограммы

не заменяют ромбовидные надписи, требуемые DOT США. Девять пиктограмм показаны на рисунке 6.9.

Рисунок 6.9 Согласованная на глобальном уровне система классификации и маркировки химических веществ Пиктограммами

Источник: Online Electronics, Inc., "Брэди 133170", 12 апреля 2019 г.,

www.onlineelec.com/parts/brady/mro/133170?campaign=238033583&content=48239295983&keyword=4564 4&gclid=Cj0KCQjw7sDlBRC9ARIsAD-

 $pdfoqbfjhmg2nrbeqjy9xregrdn2b7za1oblcs_9njcrklgyvabccfl4aapqeeealw_wcb.$

Что касается аэрозолей, то в СГС и HCS указаны элементы маркировки для каждой категории аэрозолей. HCS не требует указания второй строки указания опасности, и для негорючих аэрозолей указание опасности не требуется. Элементы этикетки, не перечисленные в таблице (идентификатор продукта и указания по мерам предосторожности), специфичны для аэрозолей.

Таблица 6.24 Согласованная на глобальном уровне система классификации и маркировки химических веществ и стандартных требований к маркировке с указанием опасности для аэрозолей

	Категория 1	Категория 2	Категория 3
Пиктограмма	Опасность	Предупреждение	Нет
Сигнальное слово	возгорания	о возгорании	предупреждения
Указание об опасности	Легковоспламеняющийся аэрозоль Баллон под давлением: Может взорваться при нагревании1	Легковоспламеняющийся аэрозоль Баллон под давлением: Может взорваться при нагревании1	Баллон под давлением: Может взорваться при нагревании1

Организация Объединенных Наций, 2017 г., СГС по классификации и маркировке химических веществ, седьмое пересмотренное издание, Источник:

Общество по информированию о химической опасности и Альянс по управлению безопасностью и гигиеной труда (Альянс SCHC-OSHA

Н.6.3 Требования к паспортам безопасности в стандартах информирования об опасности

SDSS (ранее - Паспорта безопасности материалов или MSDS) должны быть представлены в единообразном, удобном для пользователя формате, состоящем из 16 разделов. Разделы 1-8 содержат общую информацию о химическом веществе, идентификации, опасностях, составе, методах безопасного обращения и мерах контроля в чрезвычайных ситуациях. Разделы с 9 по 11 и 16 содержат другую техническую и научную информацию, такую как физические и химические свойства, стабильность и информация о реакционной способности, токсикологическая информация, информация о контроле воздействия и другая информация, включая дату подготовки или последнего пересмотра. Когда составитель не находит релевантной информации для какого-либо требуемого элемента, должно быть четко указано, что соответствующая информация не была найдена. Разделы с 12 по 15 необходимы для соответствия СГС, но ОSHA не обеспечивает соблюдения их содержания, поскольку они касаются вопросов, которыми занимаются другие агентства. Описание всех 16 разделов SDS представлено в таблице I.3. Более подробную информацию по каждой категории можно найти в кратком отчете OSHA, на который дана ссылка под таблицей.

^{).} Информационный лист об опасности, отражающий внедрение OSHA США в области СГС классификации и маркировки химических веществ, март 2017 г.

¹ Это заявление об опасности не требуется в соответствии с HCS.

Таблица 6.25 Сообщение администрации по безопасности и гигиене труда об опасностях Стандарт: Паспорта безопасности

Раздел	Содержание	Описание
1	Идентификация	В этом разделе указывается химическое вещество, указанное в SDS, а также
		рекомендуемые виды применения и приводится необходимая контактная информация
2	Идентификация Опасности	поставщика. В этом разделе указаны опасности химического вещества, представленные в
	¥,	SDS, и соответствующая предупреждающая информация, связанная с этими опасностями.
	Comm	В этом разделе указаны ингредиенты, содержащиеся в продукте, указанном в
3	Состав/ Информация об	SDS, включая примеси и стабилизирующие добавки. Этот раздел включает информацию
	Ингредиентах	о веществах, смесях и всех химических веществах, в которых заявлена коммерческая
	типредпентих	тайна. В этом разделе описывается первичная помощь, которую следует оказать неподготовленным
	Manager	сотрудникам служб реагирования человеку, подвергшемуся воздействию
4	Меры первой помощи	химического вещества. В этом разделе содержатся рекомендации по тушению
		пожара, вызванного данным химическим веществом. В этом разделе содержатся
5	Меры по тушению пожара	рекомендации по надлежащему реагированию на разливы, утечки или выбросы,
6	Аварийный выброс	включая методы локализации и очистки для предотвращения или минимизации
	Меры	воздействия на людей, имущество или окружающую среду. Он также может
		включать рекомендации, в которых проводится различие между мерами реагирования
		при крупных и мелких разливах, когда объем разлива оказывает значительное
		влияние на степень опасности. В этом разделе содержатся рекомендации по безопасному
7	Обработка и хранение	обращению с химическими веществами и условиям их безопасного хранения. В этом
	•	разделе указаны пределы воздействия, технические средства контроля и личные меры
8	Контроль воздействия/ Средства индивидуальной зап	защиты, которые могут быть использованы для минимизации воздействия на работника.
	•	
9		м разделе описываются физические и химические свойства, связанные с
	Свойствами	вещества или смеси.
10	Стабильность и реактивность	В этом разделе описываются опасности, связанные с реакционной способностью химического
		вещества, и информация о химической стабильности. Этот раздел разбит на три части:
		реакционная способность, химическая стабильность и другие.
11	Токсикологический	В этом разделе приводится информация о токсикологических свойствах и воздействии на
	Информация	здоровье или указывается, что такие данные недоступны.
121	Экологическая информация	В этом разделе представлена информация для оценки воздействия
12	экологическая информация	химического вещества (химических веществ) на окружающую среду в случае его (их) попадания
	_	в окружающую среду. В этом разделе содержатся рекомендации по надлежащей практике
131	Рекомендации	утилизации, вторичной переработке или утилизации химического вещества (химических
	по утилизации	веществ) или его контейнера, а также по методам безопасного обращения. Чтобы свести
		воздействие к минимуму, в этом разделе также следует отсылать читателя к разделу 8
		(Контроль воздействия / личная защита) SDS. Этот раздел содержит рекомендации по
141	Транспортная информация	классификации информации для отгрузки и транспортировки опасных химических веществ
		автомобильным, воздушным, железнодорожным или морским транспортом. В этом разделе
151	Нормативная информация	автомооильным, воздушным, железнодорожным или морским транспортом. В этом разделе указаны правила безопасности, гигиены труда и охраны окружающей среды, специфические для
		1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16	Пригод информация	данного продукта, которые больше нигде не указаны в SDS. В этом разделе указывается, когда
16	Другая информация	была подготовлена SDS или когда была внесена последняя известная редакция. В SDS также
		может быть указано, где были внесены изменения в предыдущую версию. Возможно, вы захотите связаться с поставщиком для разъяснения изменений.

Источник: Министерство труда США, управление по охране труда и опасным ситуациям, "Стандарт информирования об опасности

Раздел должен соответствовать Глобально согласованной системе классификации и маркировки химических веществ ООН, но OSHA не применяет его.

[:] паспорта безопасности". Февраль 2012 г., www.osha.gov/Publications/OSHA3514.html.